Но в вопросе об определении геометрических понятий через конструкцию Лейбниц разделяет воззрения своих современников. Как отмечает В. Каринский, Лейбниц, "поставив отчетливый и строгий критерий умозрения в аналитичности суждения, сознал, что та часть математического знания, которую представляет геометрия, не только в фактическом, но и в возможном ее развитии не может быть сведена сполна к тому анализу, и указал в понятиях пространства, тела, движения те элементы, которые остаются и доселе не разложенными сполна и, следовательно, не допускают безусловной прозрачности аналитических доказательств". Вот, например, как определяет Лейбниц понятие прямой, указывая на способ ее построения: "Вот понятие прямой, которым я обычно пользуюсь: прямая есть место всех покоящихся точек, когда какое-нибудь тело пришло в движение, между тем как две точки - неподвижны; или еще одно определение: прямая есть линия, рассекающая неограниченную плоскость на две конгруэнтные части". Здесь в определение понятия прямой входит понятие движения, так же как и понятия тела и - во втором определении - неограниченной плоскости (т.е. неограниченного пространства). А это как раз те понятия, которые сами по себе не являются до конца аналитичными, ибо "заключают в себе нечто мнимое и относящееся к нашим восприятиям". Эти и подобные рассуждения Лейбница дали повод к тому, чтобы интерпретировать его обоснование математики (в частности, геометрии) как близкое к кантовскому. Кант, как известно, пришел к убеждению, что суждения математики не аналитичны, а синтетичны, т.е. имеют своим условием не только рассудок, но и созерцание. Поскольку и Лейбниц указывает на два различных источника математических понятий (разум и воображение), то естественно заключить, что он рассматривает суждения математики как синтетические. К такому выводу, в частности, пришел Эрнст Кассирер, подвергнув детальному анализу лейбницев принцип образования математических понятий. При этом Кассирер сделал заключение, что принцип порождения Лейбниц кладет также и в основу математических и даже логических аксиом. А это значит, что Лейбниц, сам того не сознавая, пришел к кантовскому пониманию природы суждения, только выражал свою точку зрения в неадекватной форме, настаивая на том, что основу аксиом должны составлять суждения тождества. В действительности, как пытается доказать Кассирер, в основе всякой аксиомы лежит априорный синтез, и в этом смысле геометрические аксиомы являются парадигмами всех аксиом вообще. Опираясь на лейбницево обоснование математики, Кассирер стремится доказать свое учение о трансцендентальном синтезе, пересмотрев кантовское понимание пространства и времени как априорных форм чувственности и тем самым кантовскую трактовку чистого созерцания. — 228 —
|