Вернемся, однако, к обоснованию математики. Непоследовательность в рассуждениях Лейбница об основаниях математики отнюдь не случайна. Здесь мы имеем дело с одной из центральных проблем, унаследованной наукой нового времени от античности: в чем состоит природа суждений геометрии, чем обусловлена всеобщность и необходимость этих суждений? Говоря о том, что довести до конца анализ понятий весьма трудно, Лейбниц, как мы помним, заметил, что если в человеческом знании и есть аналитическое понятие, то, пожалуй, это только понятие числа. Определение числа ближе всего к совершенному, а это последнее имеет место в тех случаях, "когда... анализ вещи простирается в нем вплоть до первичных понятий, ничего не предполагая, что нуждалось бы в доказательстве априори своей возможности...". Такое определение понятия вещи Лейбниц называет реальным и сущностным, отличая от него, как мы уже выше упоминали, определение реальное и причинное, которое "заключает в себе способ возможного произведения вещи". В случае причинного определения доказательство возможности, подчеркивает Лейбниц, тоже осуществляется априорно, но эта априорность, так сказать, более низкого качества, чем первая, потому что здесь анализ не доводится до конца - до тождественных положений. С реальным причинным определением, т.е. с определением предмета посредством его порождения, или конструкции, мы имеем дело в геометрии. Мы порождаем геометрические понятия - линии, треугольники, окружности и т.д. - путем движения точки в пространстве. Таким образом, в качестве предпосылок геометрии, что видно на примере аксиом, постулатов и определений Евклида, выступают пространство и движение. Именно в силу этого в геометрии мы имеем дело не с чистым числом, а с величиной, а величина не тождественна числу, - в этом Лейбниц убежден так же, как Платон, и не склонен к их чрезмерному сближению, как это делал Декарт. А сближение это было основано у Декарта на том, что он считал понятия величины, фигуры и движения ясными и отчетливыми и в этом смысле ничем принципиально не отличающимися от понятия числа. По этому поводу Лейбниц высказывает следующее возражение: "Можно доказать, что понятие величины, фигуры и движения вовсе не так отчетливо, как воображают, и что оно заключает в себе нечто мнимое и относящееся к нашим восприятиям, хотя и не в такой степени, как цвет, теплота и тому подобные качества, в которых можно усомниться, действительно ли они существуют в природе вещей вне нас..." Здесь мы уже можем четко представить себе, в чем состоит расхождение между Лейбницем и Декартом. Для Декарта протяжение - это первичное понятие, совершенно отчетливое и далее не разложимое, составляющее исходный принцип его понимания природы и в то же время (поскольку природа для Декарта есть воплощение математических законов) лежащее также и в основе математики. Именно поэтому для Декарта математика - это прежде всего геометрия, притом геометрия уже не вполне античная, поскольку понятия числа и величины у Декарта, в сущности, не различаются. У Лейбница, напротив, протяжение - это не первичное, а производное понятие, оно не обладает отчетливостью и образовано не одним только умом, но умом и воображением, а значит, оно есть гибрид, как это доказывал Платон. А отсюда следует, что это понятие не может быть первым началом ни для понимания природы, ни для обоснования математики. В этом пункте Лейбниц гораздо ближе к античной философии, чем Галилей и Декарт. — 222 —
|