Методология

Страница: 1 ... 177178179180181182183184185186187 ... 399

Для того чтобы понять роль устойчивости, вернемся (см. также выше) к рассмотрению процесса построения математической модели некоторой реальной системы и проанализируем возможные «ошибки моделирования» [170]. Первым шагом является выбор того «языка», на котором формулируется модель, то есть того математического аппарата, который будет использоваться (горизонтальная пунктирная линия на Рис. 19 является условной границей между реальностью и моделями). Как правило, этот этап характеризуется высоким уровнем абстрагирования – выбираемый класс моделей намного шире, чем моделируемый объект. Возможной ошибкой, которую можно совершить на этом шаге, является выбор неадекватного языка описания.

Следующим этапом по уровню детализации является построение множества частных моделей, при переходе к которым вводятся те или иные предположения относительно свойств параметров модели. Возникающие здесь ошибки описания структуры модели могут быть вызваны неправильными представлениями о свойствах элементов моделируемой системы и их взаимодействии.

После задания структуры модели посредством выбора определенных значений параметров (в том числе – числовых) происходит переход к некоторой конкретной модели, которая считается аналогом моделируемого объекта. Источник возникающих на этом этапе «ошибок измерения» очевиден, хотя он и имеет достаточно сложную природу и заслуживает отдельного обсуждения.

Рис. 19. Этапы построения и исследования
математической модели

Когда для конкретной модели решается задача выбора оптимальных решений, то, если существует аналитическое решение для множества частных моделей, тогда, как правило, частные значения параметров, соответствующие конкретной модели, подставляются в это решение. Если аналитического решения не существует, то оптимальное решение ищется посредством имитационных экспериментов с привлечением вычислительной техники. На этом этапе – при численных расчетах – возникают вычислительные ошибки.

Изучение устойчивости решений в большинстве случаев сводится к исследованию зависимости оптимального решения от параметров модели. Если эта зависимость является непрерывной, то малые ошибки в исходных данных приведут к небольшим изменениям оптимального решения. Тогда, решая задачу выбора по приближенным данным, можно обоснованно говорить о нахождении приближенного решения.

Обсудим теперь, что следует понимать под адекватностью модели. Для этого вернемся к Рис. 19. Оптимальное решение, полученное для конкретной модели, является оптимальным в том смысле, что при его использовании поведение модели соответствует предъявляемым требованиям. Рассмотрим, насколько обоснованным является использование этого решения в реальной системе – моделируемом объекте.

— 182 —
Страница: 1 ... 177178179180181182183184185186187 ... 399