Методология

Страница: 1 ... 178179180181182183184185186187188 ... 399

Наблюдаемое поведение модели является с точки зрения субъекта, осуществляющего моделирование (например, полагающего, что модель адекватна), предполагаемым поведением реальной системы, которое в отсутствии «ошибок моделирования» будет оптимально в смысле выбранного критерия эффективности. Понятно, что в общем случае наблюдаемое поведение реальной системы и ее предполагаемое поведение могут различаться достаточно сильно. Следовательно, необходимо исследование адекватности модели, то есть – устойчивости поведения не модели, а реальной системы относительно ошибок моделирования (см. Рис. 19).

Действительно, представим себе следующую ситуацию. Пусть построена модель и найдено оптимальное в ее рамках решение. А что будет, если параметры модели «немного» отличаются от параметров реальной системы? Получается, что задача выбора решалась не для «той» системы. Отрицать такую возможность, естественно, нельзя. Поэтому необходимо получить ответы на следующие вопросы:

- насколько оптимальное решение чувствительно к ошибкам описания модели, то есть, будут ли малые «возмущения» модели приводить к столь же малым изменениям оптимального решения (задача анализа устойчивости);

- будут ли решения, обладающие определенными свойствами в рамках модели (например, оптимальность, эффективность не ниже заданной и т.д.), обладать этими же свойствами и в реальной системе, и насколько широк класс реальных систем, в которых данное решение еще обладает этими свойствами (задача анализа адекватности).

Качественно, основная идея, используемая на сегодняшний день в математическом моделировании, заключается в следующем [151, 170]. Применение оптимальных решений приводит к тому, что они, как правило, оказываются неоптимальными при малых вариациях параметров модели. Возможным путем преодоления этого недостатка является расширение множества «оптимальных» решений за счет включения в него так называемых приближенных решений (то есть, «немного худших», чем оптимальные). Оказывается, что ослабление определения «оптимальность» позволяет, установив взаимосвязь между возможной неточностью описания модели и величиной потерь в эффективности решения, гарантировать некоторый уровень эффективности множества решений в заданном классе реальных систем, то есть расширить область применимости решений за счет использования менее эффективных из них. Иными словами, вместо рассмотрения фиксированной модели реальной системы, необходимо исследовать семейство моделей.

Приведенные качественные рассуждения свидетельствуют, что существует определенный дуализм между эффективностью решения и областью его применимости (областью его устойчивости и/или областью адекватности).

— 183 —
Страница: 1 ... 178179180181182183184185186187188 ... 399