Выше мы рассмотрели простую регрессию (по одной независимой переменной) – линейную и нелинейную. Возможно также использование множественной регрессии – определения зависимости одной переменной от нескольких факторов (независимых переменных). Регрессионный анализ, помимо того, что он позволяет количественно описывать зависимость между переменными, дает возможность прогнозировать значения зависимых переменных – подставляя в найденную формулу значения независимых переменных, можно получать прогноз значений зависимых. При этом следует помнить, что построенная модель «локальна», то есть, получена для некоторых вполне конкретных значений переменных. Экстраполяция результатов модели на более широкие области значений переменных может привести к ошибочным выводам. 4. Снижение размерности. Часто в результате экспериментальных исследований возникают большие массивы информации. Например, если каждый из исследуемых объектов описывается по нескольким критериям (измеряются значения нескольких переменных – признаков), то результатом измерений будет таблица с числом ячеек, равным произведению числа объектов на число признаков (показателей, характеристик). Возникает вопрос, а все ли переменные являются информативными. Конечно, исследователю желательно было бы выявить существенные переменные (это важно с содержательной точки зрения) и сконцентрировать внимание на них. Кроме того, всегда желательно сокращать объемы обрабатываемой информации (не теряя при этом сути). Чем тут могут помочь статистические методы? Существует целый класс задач снижения размерности, цель которых как раз и заключается в уменьшении числа анализируемых переменных либо посредством выделения существенных переменных, либо/и построения новых показателей (на основании полученных в результате эксперимента). Для снижения размерности используется факторный анализ, а основными методами являются кратко рассматриваемый ниже метод главных компонент и многомерное шкалирование [183]. Метод главных компонент заключается в получении нескольких новых показателей – главных компонент, являющихся линейными комбинациями исходных показателей (напомним, что линейной комбинацией называется взвешенная сумма), полученных в результате эксперимента. Главные компоненты упорядочиваются в порядке убывания той дисперсии, которую они «объясняют». Первая главная компонента объясняет б?льшую часть дисперсии, чем вторая, вторая – б?льшую, чем третья и т.д. Понятно, что чем больше главных компонент будет учитываться, тем большую часть изменений можно будет объяснить. — 123 —
|