На Рис. 12а) и в) изображены ситуации, когда все экспериментальные точки лежат на прямой (абсолютное значение коэффициента линейной корреляции равно единице). В ситуации, изображенной на рисунке Рис. 12б), однозначно провести прямую через экспериментальные точки невозможно (коэффициент линейной корреляции равен нулю).
Рис. 12. Величины коэффициента линейной корреляции Если экспериментальные точки сгруппированы около некоторой прямой – см. Рис. 12г) и д), то коэффициент линейной корреляции принимает значения, отличные от нуля, причем чем «ближе» точки к прямой, тем выше абсолютное значение коэффициента линейной корреляции. То есть, чем выше абсолютное значение коэффициента Пирсона, тем сильнее исследуемые переменные линейно связаны между собой. Для данных, измеренных в порядковой шкале, следует использовать коэффициент ранговой корреляции Спирмена (он может применяться и для данных, измеренных в интервальной шкале, так как является непараметрическим и улавливает тенденцию – изменения переменных в одном направлении), который обозначается s и определяется сравнением рангов – номеров значений сравниваемых переменных в их упорядочении.
Отметим, что большое (близкое к плюс единице или к минус единице) значение коэффициента корреляции говорит о связи переменных, но ничего не говорит о причинно-следственных отношениях между ними. Так, например, из высокой корреляции температуры воздуха за окном и времени суток нельзя делать вывод о том, что движение солнца обусловлено изменениями температуры воздуха. Поэтому для установления причин связей между какими-либо явлениями, процессами необходимы дополнительные исследования по содержательной интерпретации этих связей. Дисперсионный анализ. Изучение наличия или отсутствия зависимости между переменными можно также проводить и с помощью дисперсионного анализа. Его суть заключается в следующем. Дисперсия характеризует «разброс» значений переменной. Переменные связаны, если для объектов, отличающихся значениями одной переменной, отличаются и значения другой переменной. Значит, нужно для всех объектов, имеющих одно и то же значение одной переменной (называемой независимой переменной), посмотреть, насколько различаются (насколько велика дисперсия) значения другой (или других) переменной, называемой зависимой переменной. Дисперсионный анализ как раз и дает возможность сравнить отношение дисперсии зависимой переменной (межгрупповой дисперсии) с дисперсией внутри групп объектов, характеризуемых одними и теми же значениями независимой переменной (внутригрупповой дисперсией). — 121 —
|