Концепции современного ествествознания

Страница: 1 ... 285286287288289290291292293294295 ... 472

Почему же электромагнитное и слабое взаимодействия обладают столь непохожими свойствами? Теория Вайнберга — Салама объясняет эти различия нарушением симметрии. Если бы симметрия не нарушалась, то оба взаимодействия были бы сравнимы по величине. Первоначально W- и Z-кванты не имеют массы, но из-за нарушения симметрии некоторые частицы Хиггса сливаются с W- и Z-частицами, наделяя их массой. А фотон не участвует в этом процессе слияния с частицами Хиггса и потому не обладает массой покоя. Нарушение симметрии влечет за собой резкое уменьшение слабого взаимодействия, поскольку оно непосредственно связано с массами W- и Z-частиц. Можно сказать, что слабс взаимодействие столь мало потому, что W- и Z -частицы очень массивны.

Лептоны редко сближаются на столь малые расстояния (r = 10-18 м), на которых становится возможным обмен тяжелыми векторными бозонами. Но при больших энергиях (более 100 ГэВ), когда частицы W и Z могут свободно рождаться, обмен W- и Z-бозонами осуществляется столь же легко, как и обмен фотонами (безмассовыми частицами), разница между фотонами и бозонами стирается. В этих условиях должна существовать полная симметрия между электромагнитным и слабым взаимодействием — электрослабое взаимодействие.

Наиболее убедительная экспериментальная проверка новой теории заключалась в подтверждении существования гипотетических W- и Z-частиц. Их открытие в 1983 г. стало возможным только с созданием очень мощных ускорителей новейшего типа и означало торжество теории Вайнберга — Салама. Было окончательно доказано, что электромагнитное и слабое взаимодействия являются двумя компонентами единого электрослабого взаимодействия.

373

В 1979 г. С. Вайнбергу, А. Саламу и Ш. Глэшоу была присуждена Нобелевская премия за создание теории электрослабого взаимодействия.

10.3.4. Квантовая хромодинамика. Следующий шаг на пути познания фундаментальных взаимодействий — создание теории сильного взаимодействия. Для этого необходимо придать черты калибровочного поля сильному взаимодействию. Последнее можно представлять как результат обмена глюонами, который обеспечивает связь кварков (попарно или тройками) в адроны (см. 10.3.2). Обмен глюонами изменяет «цвет» кварков, но оставляет неизменными остальные характеристики, т.е. сохраняет их сорт («аромат»).

Теория сильного взаимодействия создавалась по той же схеме, что и теория слабого взаимодействия. Требование локальной калибровочной симметрии (т.е. инвариантности относительно изменений «цвета» в каждой точке пространства) приводит к необходимости введения компенсирующих силовых полей. Всего требуется восемь новых компенсирующих силовых полей. Частицами-переносчиками этих полей являются глюоны. Таким образом, из теории следует, что должно быть целых восемь различных типов глюонов.

— 290 —
Страница: 1 ... 285286287288289290291292293294295 ... 472