Опыт успешного объединения слабого и электромагнитного взаимодействий на основе идеи калибровочных полей подсказал возможные пути дальнейшего развития принципа единства физики, объединения фундаментальных физических взаимодействий. Один из них основан на том удивительном факте, что константы взаимодействия электрослабого и сильного взаимодействий при переходе к малым расстояниям (т.е. к высоким энергиям) становятся равными друг другу при одной и той же энергии. Эту энергию называли энергией объединения. Она равна примерно 1014—1016 ГэВ; ей соответствует расстояние =10-29 см. 375 При энергии более 1014—1016 ГэВ, или на расстояниях менее 10-29 см, сильное, слабое и электромагнитное взаимодействия описываются единой константой, т.е. имеют общую природу. Кварки и лептоны здесь практически не различимы, а глюоны, фотоны и векторные бозоны W± и Z° являются квантами калибровочных полей с единой калибровочной симметрией. Ведь если электрослабое и сильное взаимодействия в действительности представляют собой лишь две стороны Великого единого взаимодействия, то последнему также должно соответствовать калибровочное поле с некоторой сложной симметрией. Она должна быть достаточно общей, способной охватить все калибровочные симметрии, содержащиеся и в квантовой хромодинамике, и в теории электрослабого взаимодействия. В то же время ее спонтанное нарушение должно приводить к разделению электрослабого и сильного взаимодействия. Отыскание такой симметрии — главная задача на пути создания единой теории электрослабого и сильного взаимодействия. Существуют разные подходы, порождающие конкурирующие варианты теорий Великого объединения. Тем не менее все эти гипотетические варианты Великого объединения имеют ряд общих особенностей. Во-первых, во всех гипотезах кварки и лептоны — носители электрослабого и сильного взаимодействий — включаются в единую теоретическую схему. До сих пор они рассматривались как совершенно различные объекты. Во-вторых, привлечение абстрактных калибровочных симметрии приводит к открытию новых типов полей, обладающих новыми свойствами, например способностью превращать кварки в лептоны. В простейшем варианте теории Великого объединения для превращения кварков в лептоны требуется 24 поля, причем 12 из квантов этих полей уже известны: фотон, две W-частицы, Z°-частица и восемь глюонов. Остальные 12 квантов — новые сверхтяжелые промежуточные бозоны, объединенные общим названием Х- и Y-частицы (обладающие цветом и электрическим зарядом). Эти кванты соответствуют полям, поддерживающим более широкую калибровочную симметрию и перемешивающим кварки с лептонами. Следовательно, Х- и Y-частицы могут превращать кварки в лептоны (и наоборот). — 292 —
|