6. ТЕОРЕМА ГЁДЕЛЯНа теорему Гёделя о неполноте ссылается множество людей. Ее приводят как аргумент в пользу своих утверждений физики, инженеры, философы, психологи, биологи, моралисты, педагоги и даже искусствоведы. Но как часто бывает с эпохальными результатами, все говорят о теореме Гёделя, но очень мало кто имеет о ней адекватное представление и еще меньше таких, которые читали её аутентичный текст. До сих пор не имеется русского перевода знаменитой статьи. Это объясняется тем, что в свое время статья Гёделя интересовала только специалистов по математической логике, а все они тогда владели немецким языком. Когда же значение теоремы Гёделя стало выходить за рамки математики, появились компактные и методологически более совершенные ее изложения. Однако именно изложение Гёделя имеет огромный интерес. Метод, которым сам Гёдель доказал свою теорему, ценен в такой же степени, как и его результат. Вообще, если подходить к вопросу с философской позиции, то метод тут неотделим от результата. Ниже мы, не стремясь, конечно, к какой‑либо строгости, очертим общий ход рассуждений Гёделя, сопровождая схему доказательства некоторыми комментариями. Но сначала несколько слов об авторе теоремы. Курт Гёдель родился в Праге (Чехия в то время входила в состав Австро‑Венгрии) в 1906 году. Главные свои открытия он сделал в возрасте 24 лет (заметим, что и Ньютон написал свои лучшие работы примерно в таком же возрасте), однако и в дальнейшем получал крупные научные результаты, относящиеся, в частности, к теории множеств; в 1949 г. он предложил новый тип решения уравнений общей теории относительности, заслужив похвалу Эйнштейна[116]. В настоящее время Гёдель живет в Соединенных Штатах и является профессором Института высших исследований в Принстоне, штат Нью‑Джерси. В 1951 г. он был удостоен высшей награды, присуждаемой в США за научные достижения, Эйнштейновской премии. В статье, в которой доказывалась теорема о неполноте формальной арифметики, Гёдель исследует систему формальной арифметики Principia Mathematica (он называет эту аксиоматически‑дедуктивную теорию «системой PM»). Начинает он свою статью следующими словами: «Развитие математики в направлении все увеличивающейся строгости привело, как известно, к формализации многих ее частей, так что стало возможным доказывать теоремы, не пользуясь ничем, кроме нескольких механических правил. Наиболее широкие формальные системы, построенные к настоящему времени, это, с одной стороны, система Principia Mathematica (РМ) и, с другой стороны, система аксиом Цермело–Френкеля для теории множеств (развитая в дальнейшей Дж. фон Нейманом). — 81 —
|