Мы все время говорим о формальной арифметике, но результаты Гёделя относятся к любому формальному исчислению, достаточно богатому, чтобы содержать в себе арифметику, то есть к исчислению, «начиная с арифметики». Исчисление высказываний беднее арифметики, поэтому на него теорема Гёделя не распространяется – и, как мы знаем, легко доказать его непротиворечивость (оно также полно). Таким образом, работы Гёделя были первыми строгими исследованиями возможностей дедуктивного метода познания. И эти исследования привели к результатам, которые никак не могла предвидеть наука «догелевского» периода. 'Открытия Гёделя вызвали множество толкований. Общим их мотивом – полностью убедительным –‑ является заключение об определенной внутренней ограниченности регулярных процедур дедуктивного и вычислительного характера, о невозможности представления процесса расширения знания (начиная с математики) и в виде завершенной формальной системы. Как отметил П. С. Новиков, «понятия и принципы всей математики не могут быть полностью выражены никакой формальной системой, как бы мощна она ни была»[120]. Но это так же мало означает дискредитацию метода построения формальных систем, как открытие предельности скорости света – дезавуацию физической теории пространства и времени. Из «ограничительных» результатов математической логики – эти результаты не исчерпывались открытиями Гёделя, о которых шла речь, а получили дальнейшее продолжение в большой серии теорем, касающихся неразрешимости и неполноты формальных теорий, тем более не следует заключение о превосходстве интуиции над разумом. Гносеологические выводы из теоремы Гёделя нужно делать с большой осторожностью. То, на что наталкивает нас в философском плане эта теорема, высказано Э. Нагелем и Дж. Ньюменом в следующей форме: «Заключения, к которым пришел Гёдель, порождают, естественно, вопрос, можно ли построить вычислительную машину, сравнимую по своим «творческим» математическим возможностям с человеческим мозгом. Современные вычислительные машины обладают некоторым точно фиксированным запасом команд, которые умеют выполнять их элементы и блоки; команды соответствуют фиксированным правилам вывода некоторой формализованной аксиоматической процедуры. Таким образом, машина решает задачу, шаг за шагом выполняя одну из «встроенных» в нее заранее команд. Однако, как видно из гёделевской теоремы о неполноте, уже в элементарной арифметике натуральных чисел возникает бесчисленное множество проблем, выходящих за пределы возможностей любой конкретной аксиоматической системы, а значит, и недоступных для таких машин, сколь бы остроумными и сложными ни были их конструкции и с какой бы громадной скоростью ни проделывали они свои операции. Для каждой конкретной задачи в принципе можно построить машину, которой эта задача была бы под силу, но нельзя создать машину, пригодную для решения любой задачи. Правда, и возможности человеческого мозга могут оказаться ограниченными, так что и человек тогда сможет решить не любую задачу. Но даже если это так, структурные и функциональные возможности человеческого мозга пока еще намного больше по сравнению с возможностями самых изощренных из мыслимых пока машин... Единственный непреложный вывод, который мы можем сделать из гёделевской теоремы о неполноте, состоит в том, что природа и возможности человеческого разума неизмеримо тоньше и богаче любой из известных пока машин»[121]. — 86 —
|