Педагогическая психология

Страница: 1 ... 5859606162636465666768 ... 232

Естественно, что формирование этого приема должно про­исходить постепенно, на материале разных учебных предметов.

Не останавливаясь на других приемах логического мыш­ления, укажем, что все рассмотренные нами необходимы для полноценного усвоения изучаемых в школе предметов: дейст­вия, стоящие за этими приемами, и будут служить средством усвоения различных предметных знаний. Важно отметить и то, что на основе этих приемов можно формировать и более сложные методы логического мышления.

Для того чтобы показать важность формирования рас­смотренных элементарных логических приемов, проанализи­руем один из труднейших методов доказательства, с которым ученики встречаются при изучении геометрии, - доказатель­ство методом от противного. Легко показать, что в его со­держание входят в основном рассмотренные нами простейшие логические операции. В самом деле, прежде всего при доказа­тельстве методом от противного строится предположение, что объект, данный в условии теоремы, не обладает теми свойст­вами, которые указаны в заключении теоремы.

Так, например, в одной из теорем о параллельных прямых говорится, что если при пересечении двух прямых третьей накрест лежащие углы равны, то прямые параллельны.

Мы допускаем, что прямые не параллельны. В основе этого лежит так называемая дихотомическая классификация: все прямые на плоскости мы можем поделить на два класса - пересекающиеся и не пересекающиеся, т.е. параллельные. Это значит, что данные нам в условии теоремы прямые обя­зательно должны относиться к одному из этих классов.

Если мы докажем, что прямые не относятся к одному, то они обязатель­но должны относиться ко второму классу.

Мы предполагаем, что они относятся к пересекающимся прямым. После этого мы пользуемся вторым известным уже нам действием - действием выве­дения следствий: мы начинаем получать последовательно все те свойства, которые необходимо следуют из факта принадлежности прямых к классу пере­секающихся. Постепенно мы доходим до такого свойства, которое противоре­чит данным условиям. Значит, с одной стороны, если прямые относятся к пере­секающимся, то они обязаны обладать выведенным свойством, но нам извест­но, что они этим свойством не обладают. А раз прямые не обладают хоть од­ним свойством из системы необходимых, то они не могут относиться к данному классу объектов. Но если они не относятся к пересекающимся, то они могут относиться к не пересекающимся, т. е. к параллельным.

Итак, этот прием, обычно плохо понимаемый учащимися даже старших классов, оказывается построен на нескольких простых действиях: дихотомической классификации, выве­дении следствий, на понятии необходимых свойств. Если все эти компоненты сформировать, то, как показали опыты, учащиеся успешно усваивают и доказательство методом от противного, и доказательства другими методами, что сейчас у большинства учеников вызывает затруднения даже в старших классах.

— 63 —
Страница: 1 ... 5859606162636465666768 ... 232