Педагогическая психология

Страница: 1 ... 5556575859606162636465 ... 232

Следующий логический прием, который широко использу­ется в процессе обучения и без которого невозможно полноцен­ное мышление человека, - прием выведения следствий с соблюде­нием требований закона контрапозиции. Этот прием, как и пре­дыдущие, также обычно не выступает в школе в качестве пред­мета специального усвоения. В силу этого далеко не все уча­щиеся даже старших классов понимают, что одно и то же след­ствие может быть связано с разными основаниями, и поэтому от наличия следствия нельзя переходить к утверждению нали­чия основания. Так, учащиеся правильно указывают, что если углы смежные, то их сумма равна 180°. Но нельзя утверждать, как это делают некоторые ученики, обратное: если сумма углов равна 180°, то они являются смежными (прямые вертикальные углы равны в сумме 180°, но они не являются смежными). Одно и то же следствие (сумма углов 180°) имеет разные основания.

Учащимся восьмого класса были предложены пары посы­лок, из которых требовалось сделать выводы. Вот некоторые из них: «Если у человека повышена температура, то он болен. У человека не повышена температура». «Если данный четырех­угольник является ромбом, то его диагонали взаимно перпен­дикулярны. Данный четырехугольник не является ромбом».

Подавляющее большинство учащихся и в первом, и во втором случае дали неверные ответы: они сделали вывод, что человек, не имеющий повышенной температуры, не болен, и что у данного четырехугольника диагонали не взаимно пер­пендикулярны.

Суть их ошибки состоит в том, что они сделали вывод с нарушением закона контрапозиции. В чем состоит этот закон? Этот закон нам указывает, когда мы имеем право делать вы­вод, а когда не имеем.

Для удобства работы изобразим сущность закона контрапозиции схематически.

1. Если А, то В 2. Если А, то В

Дано А Дано не В

Вывод: В Вывод: не А

— 60 —
Страница: 1 ... 5556575859606162636465 ... 232