После освоения действия измерения учащиеся усваивают действие сравнения двух величин. Здесь учащиеся осваивают действие установления взаимно-однозначного соответствия между двумя множествами. Необходимо показать, что сравнивать величины можно только в том случае, когда они измерены одной и той же мерой. Предлагается, например, сравнить по объему две чашки крупы, которые резко различаются по величине. При этом крупу в маленькой чашке надо измерить маленькими чайными ложками, а в большой - большими столовыми. Дети получают два ряда меток, приводят их во взаимно-однозначное соответствие и видят: по меткам оказывается, что в маленькой чашечке крупы больше. Но очевидно, что это не так. И вот тут выясняется, почему получен неверный результат. Можно использовать и такие величины (например, длину ленточек), которые не равны, а измерение разными мерами одно и то же число меток, т.е. получается, что ленточки одинаковой длины, а на самом деле они разные по длине. Ошибка очевидна. В дальнейшем это условие выполняется детьми очень строго. Формирование понятий равно, не равно, больше, меньше идет успешней, если учитель предлагает не абстрактные задачи, не скучные отрезки и площади сами по себе, а облекает их в задачи, интересные для детей шести-семи лет. Например, учитель предлагает сравнить по длине дорожки, по которым бегают зверьки к ручейку пить. Дети могут разоблачить с помощью измерения хитрую лису, которая нечестно делила крупу с медведем и т. д. Результат каждого сравнения, производимого детьми практически, руками, предстает перед ними в наглядном виде. Так, например, сравнивая по длине дорожки ежика и мышки, дети поучили такой результат: Е М Очевидно, что дорожка ежика длиннее на три мерочки. Постепенно дети учатся записывать полученные результаты на математическом языке («переводят» на математический язык), употребляя буквы и математические знаки, отношения между двумя множествами (=, =, >, <). Учащиеся сами получают последовательный ряд чисел, используя один и тот же способ: прибавление одной единицы к полученному числу. После введений чисел в пределах 10 учащиеся знакомятся с арифметическими действиями, с переместительным и сочетательным законами и на этой основе детально изучают состав числа, раскладывая его на различные группы единиц. Большое внимание уделяется счету равными группами, что является подготовкой к введению умножения. Работа идет с использованием числовой оси. Для детей такой счет выступает как переход на более крупную меру. — 186 —
|