Для более углубленного изучения сопряженности количественных показателей в исследуемой совокупности объектов служит регрессионный анализ. Регрессия (от лат. regressio — движение назад), выражаемая либо графически, либо аналитически, показывает как в среднем изменяется изучаемый показатель при изменениях какого-то фактора (факториального показателя). Так же как и корреляция, регрессия может быть парной, либо множественной. В общем случае процедура регрессивного анализа (на примере парной регрессии) сводится к следующему. Пусть есть основания полагать, что изучаемые случайные величины х и у связаны некоторым соотношением. Тогда задача его описания распадается на установление общего вида зависимости и вычисление оценок его параметров. Стандартных методов выбора общего вида кривой не существует: здесь необходимо сочетать визуальный анализ корреляционного поля с качественным анализом природы переменных. Методы оценки параметров наиболее хорошо разработаны для линейных зависимостей, основным из них является метод наименьших квадратов. В общем виде уравнение множественной линейной регрессии имеет вид (8.2) где а0 и аi — неизвестные коэффициенты, определяемые методом наименьших квадратов; xi — исследуемые психологические показатели; n — число учитываемых показателей. При п = 1 выражение (8.2) превращается в уравнение парной регрессии. Выражения типа (8.2) называются также регрессионными моделями. В заключение отметим, что регрессия показывает лишь как изменяется изучаемый показатель в зависимости от изменения факторных показателей, но она ни в коем случае не показывает причинно-следственных связей между показателями. При изучении трудовой деятельности часто приходится оценивать достоверность и степень влияния какого-либо фактора (или факторов) на изменение величины некоторого показателя деятельности человека по сравнению со случайными причинами (например, случайным изменением значений изучаемого показателя от опыта к опыту). Эффективным методом решения подобных задач является дисперсионный анализ. В зависимости от числа факторов, влияние которых исследуется, дисперсионный анализ подразделяется на одно-, двух-, трех- и т. д. факторный. При проведении дисперсионного анализа вся совокупность экспериментальных данных разбивается на группы по градациям факторов. Градации могут различаться либо качественно, либо количественно по степени действия фактора. Так, при изучении влияния космического полета на психофизиологические показатели космонавта в дисперсионный комплекс были включены такие факторы, как условия работы космонавта с двумя градациями (полетные условия, земные условия); индивидуальность космонавта, каждую градацию которой представлял конкретный человек [137]. Значимость влияния фактора оценивается с помощью критерия согласия Фишера, представляющего в данном случае отношение факториальной (межгрупповой) дисперсии к случайной (внутригрупповой). Если различие между этими дисперсиями оказывается значимым, то и действие фактора на исследуемый показатель деятельности человека оказывает существенное влияние. — 189 —
|