Основы инженерной психологии

Страница: 1 ... 184185186187188189190191192193194 ... 356

Для более углубленного изучения сопряженности количественных показателей в исследуемой совокуп­ности объектов служит регрессионный анализ. Регрес­сия (от лат. regressio — движение назад), выражаемая либо графически, либо аналитически, показывает как в среднем изменяется изучаемый показатель при из­менениях какого-то фактора (факториального показа­теля). Так же как и корреляция, регрессия может быть парной, либо множественной. В общем случае проце­дура регрессивного анализа (на примере парной рег­рессии) сводится к следующему. Пусть есть основания полагать, что изучаемые случайные величины х и у связаны некоторым соотношением. Тогда задача его описания распадается на установление общего вида зависимости и вычисление оценок его параметров. Стандартных методов выбора общего вида кривой не существует: здесь необходимо сочетать визуальный анализ корреляционного поля с качественным анали­зом природы переменных. Методы оценки параметров наиболее хорошо разработаны для линейных зависи­мостей, основным из них является метод наименьших квадратов. В общем виде уравнение множественной линейной регрессии имеет вид

(8.2)

где а0 и аi — неизвестные коэффициенты, определяе­мые методом наименьших квадратов; xi — исследуемые психологические показатели; n — число учитываемых показателей.

При п = 1 выражение (8.2) превращается в уравне­ние парной регрессии. Выражения типа (8.2) называ­ются также регрессионными моделями. В заключение отметим, что регрессия показывает лишь как изменя­ется изучаемый показатель в зависимости от измене­ния факторных показателей, но она ни в коем случае не показывает причинно-следственных связей между показателями.

При изучении трудовой деятельности часто при­ходится оценивать достоверность и степень влияния какого-либо фактора (или факторов) на изменение ве­личины некоторого показателя деятельности человека по сравнению со случайными причинами (например, случайным изменением значений изучаемого показа­теля от опыта к опыту). Эффективным методом реше­ния подобных задач является дисперсионный анализ. В зависимости от числа факторов, влияние которых исследуется, дисперсионный анализ подразделяется на одно-, двух-, трех- и т. д. факторный. При проведении дисперсионного анализа вся совокупность эксперимен­тальных данных разбивается на группы по градациям факторов. Градации могут различаться либо качествен­но, либо количественно по степени действия фактора. Так, при изучении влияния космического полета на психофизиологические показатели космонавта в дис­персионный комплекс были включены такие факторы, как условия работы космонавта с двумя градациями (полетные условия, земные условия); индивидуальность космонавта, каждую градацию которой представлял конкретный человек [137]. Значимость влияния факто­ра оценивается с помощью критерия согласия Фише­ра, представляющего в данном случае отношение факториальной (межгрупповой) дисперсии к случайной (внутригрупповой). Если различие между этими дис­персиями оказывается значимым, то и действие фак­тора на исследуемый показатель деятельности челове­ка оказывает существенное влияние.

— 189 —
Страница: 1 ... 184185186187188189190191192193194 ... 356