Одним из способов проверки статистических гипотез является последовательный анализ. Он применяется в том случае, когда число наблюдений в исследовании не устанавливается заранее, а является случайной величиной. Особенность последовательного анализа состоит в том, что после осуществления каждого наблюдения принимается одно из следующих решений: принять проверяемую гипотезу, отвергнуть ее, продолжать испытания. Прикладные задачи исследования, в которых применяется последовательный анализ, могут быть теми же, что и в случае проверки гипотез по выборкам заданной длины, но при этом возможна существенная экономия в длительности эксперимента. В инженерной психологии последовательный анализ широко используется, например, при оценке результатов деятельности оператора. С его помощью определяется то число опытов (решаемых оператором учебных задач), по выполнении которых оператору с заданной достоверностью выставляется оценка «зачет» или «незачет». Процедура последовательного анализа сводится к следующему. На каждом шаге испытаний после каждого опыта фиксируется число dn благоприятных исходов среди проведенных п наблюдений. По известным формулам [15], зная заданные вероятности ошибок первого и второго рода, определяются значения оценочных границ аn и rn. В системе координат (dn, n) строятся две параллельные прямые гп (п) и ап (п), имеющие одинаковый угловой коэффициент (рис. 8.1). Точки (dn, n) наносятся на график по ходу контроля, и эксперимент проводится до тех пор, пока очередная точка не выйдет за пределы полосы, заключенной между прямыми ап и гп. Если dn<an, то оператор получает «незачет», если Рис. 8.1. Схема проведения последовательного анализа dn>rn— «зачет». В случае, если an<dn<rn, то проверка продолжается. Применение последовательного анализа позволяет существенно уменьшить объем исследования по сравнению с традиционным методом фиксированной однократной выборки. Построение законов распределения позволяет наиболее полно и точно описать изучаемую случайную величину, полученную в результате проведения инженерно-психологического наблюдения или эксперимента. Для построения закона распределения предварительно строится гистограмма (от греч. histos — столб и gramma— запись). Она является одним из способов графического представления количественных данных в виде прямоугольных столбиков, примыкающих друг к другу, высота которых соответствует частоте каждого класса данных. Для построения гистограммы интервал, в котором сосредоточены наблюдения, делится на n подынтервалов (разрядов) и подсчитывается число наблюдений, значения которых соответствует данному разряду. На основании этих данных и строится гистограмма, которая представляет собой кусочно-непрерывную функцию, которая в пределах данного разряда равна числу (частоте) наблюдений, попавших в него. Наиболее часто гистограмму практически применяют в качестве плотности распределения случайной величины, по наблюдениям которой она построена. — 187 —
|