(8.1) где хi — наблюденное значение случайной величины, n — объем выборки (число наблюдений). Квадратный корень из дисперсии, т. е. величина, , носит название среднеквадратического отклонения и имеет ту же размерность, что и сама случайная величина. Для оценки вероятности случайного события используют величину , где m — число опытов, в которых данное событие имело место. Чем больше n, тем ближе вычисленные значения , Dx, P к своим истинным значениям, характеризующим генеральную совокупность изучаемой случайной величины. Сравнение между собой одноименных характеристик нескольких выборок проводится потому, что в силу ограниченного объема выборки полученные различия между характеристиками случайных величин (математическими ожиданиями, дисперсиями и др.) может быть случайным и не всегда означает, что эти величины различны на самом деле. Проверку этого факта, т. е. проверку статистических гипотез, нужно проводить с помощью непараметрических и параметрических критериев согласия. В первом случае используются не сами значения наблюдаемых величин, а только их упорядоченность (для каждой пары сравниваемых величин известно, какая из них больше), т. е. критерии, не зависящие от параметров распределения. Такие критерии весьма удобны для практического использования, так как требуют минимального объема вычислений и априорных сведений и могут использоваться даже при невозможности прямых измерений изучаемых признаков. Такие случаи встречаются, например, при проверке степени различия индивидуальных качеств двух групп операторов в случае, если эти качества не могут быть количественно определены. Основными из непараметрических критериев согласия являются критерий знаков, критерий Смирнова и критерий Вилконсона. При использовании параметрических критериев вычисляются значения параметров сравниваемых распределений. Это усложняет процедуру сравнения, однако позволяет получить более точные результаты. Основными из параметрических критериев являются критерий Фишера, критерий Стьюдента и критерий x2. Критерий Фишера используется для проверки статистических гипотез о равенстве дисперсий двух выборок. Он применяется в тех прикладных задачах, где необходимо исследовать стабильность изучаемых величин. Например, он может быть использован для сравнения рассеяний ошибок двух операторов, разбросов оценок экспертов, полученных по разным методикам, однородности латентных периодов времени реакции в различных экспериментах и т. п. Критерий Стьюдента применяется для проверки значимости различия между двумя средними значениями, критерий x2 служит для сравнения двух распределений, для проверки согласия эмпирического распределения с одним из теоретических. — 186 —
|