Параметр Z может использоваться для изучения временных характеристик биопотенциалов, отражающих динамику чередования фаз возбуждения и торможения нейронных ансамблей головного мозга оператора во время работы. Увеличение Z свидетельствует об изменении (локальной нестационарности) биопотенциалов, вызванном структурной перестройкой нейронных ансамблей [164]. Более подробно вопросы анализа случайных процессов рассмотрены в специальной литературе [50, 96, 177]. МАТЕМАТИЧЕСКИЕ МЕТОДЫ 8.1. Математическая обработка экспериментальных данных Математические методы представляют совокупность алгоритмов, основанных на теоретических положениях и идеях определенного раздела математики и позволяющих осуществить комплексный анализ тех или иных закономерностей и отношений. Применение математических методов в инженерной психологии развивается, как уже отмечалось, по трем основным направлениям:
Во многих случаях основным способом вычисления последних является обработка экспериментальных данных или моделирование, поэтому это направление в данном разделе специально не рассматривается. Способы вычисления этих показателей рассматриваются при изучении соответствующих вопросов. Применение математических методов связано с прогрессом вычислительной техники, применением ЭВМ в инженерно-психологических исследованиях. Эта связь наиболее ярко проявляется при автоматизации обработки результатов эксперимента, применении имитационных моделей деятельности оператора, производстве различного рода вычислений. Основными задачами математической обработки экспериментальных данных являются: определение характеристик случайных величин и событий, сравнение между собой их вычисленных значений, построение законов распределения случайных величин, установление зависимости между полученными случайными величинами, анализ случайных процессов. Эти вопросы подробно излагаются в специальной литературе [112, 128, 177]. Здесь же представляется целесообразным рассмотреть лишь особенности и возможности применения их при решении инженерно-психологических задач. Основными характеристиками случайных величин являются их математическое ожидание и дисперсия, а случайных событий — вероятность их наступления. Математическое ожидание характеризует среднее значение наблюдаемой случайной величины (например, времени реакции, погрешности измерений, числа ошибок, допущенных человеком при выполнении работы и т. п.), а дисперсия является мерой рассеивания ее значений относительно среднего значения. Выборочные (опытные) значения математического ожидания и дисперсии вычисляются соответственно по формулам — 185 —
|