Tertium Organum: ключ к загадкам мира

Страница: 1 ... 5455565758596061626364 ... 245

Но математика в вопросе об измерениях видит как будто больше нас или дальше нас, через какие-то грани, которые останавливают нас, но не стесня­ют ее, — и видит, что нашим понятиям измерений не соответствуют никакие реальности.

Если бы три измерения соответствовали дей­ствительно трем степеням, то мы имели бы пра­во сказать, что только три степени относятся к геометрии, а все остальные отношения высших степеней, начиная с четвертой, лежат за геомет­рией.

Но у нас нет даже этого. Изображение измере­ний степенями совершенно условно.

Вернее сказать — геометрия с точки зрения ма­тематики есть искусственное построение для разре­шения задач на условных данных, выведенных, вероятно, из свойств нашей психики.

Систему исследования «высшего пространства» Хинтон называет метагеометрией, и он связывает с метагеометрией имена Лобачевского, Гаусса и дру­гих исследователей неэвклидовой геометрии.

Мы должны рассмотреть, в каком отношении к затронутым нами вопросам находятся теории этих ученых.

Хинтон выводит свои идеи из Канта и Лобачевс­кого.

Другие, наоборот, противопоставляют идеи Кан­та идеям Лобачевского. Так, Роберто Бонола в «Не­эвклидовой геометрии» говорит, что воззрение Лобачевского на пространство противоположно кантовскому. Он говорит:

Учение Канта рассматривает пространство как не­которую форму субъективного созерцания, необходи­мо предшествующую всякому опыту; учение Лобачев­ского, примыкающее скорее к сенсуализму и обычно­му эмпиризму, возвращает геометрию в область опыт­ных наук*.

Какой же взгляд правилен и в каком отношении стоят идеи Лобачевского к нашей проблеме? Вернее всего будет сказать: ни в каком отношении. Неэвк­лидова геометрия не есть метагеометрия, и неэвк­лидова геометрия стоит к метагеометрии в таком же отношении, как Эвклидова геометрия.

Результаты всей неэвклидовой геометрии, под­вергшей переоценке основные аксиомы Эвклида и нашедшей свое наиболее полное выражение в рабо­тах Больяйя, Гаусса и Лобачевского, выражается в формуле: Аксиомы данной геометрии выражают свойства данного пространства.

Так, геометрия на плоскости принимает все три аксиомы Эвклида, то есть:

1) прямая линия есть кратчайшее расстояние между двумя точками;

2) каждую фигуру можно переносить на другое место, не нарушая ее свойств;

3) параллельные линии не встречаются. (Эта последняя аксиома обыкновенно выражает­ся по Эвклиду иначе).

В геометрии на сфере или на вогнутой поверхно­сти верны только две первые аксиомы, так как ме­ридианы параллельные у экватора у полюсов уже встречаются. Причем в геометрии на сфере сумма трех углов треугольника более двух прямых, а в

— 59 —
Страница: 1 ... 5455565758596061626364 ... 245