На рис. 18 приведен другой пример. Здесь имеются не одно, а два бесконечных измерения, и одно дополнительное измерение, свернутое в окружность. В этом случае окружность находится в каждой без исключения точке двумерного пространства. И если бы было три пространственных измерения, свернутые измерения существовали бы в каждой точке трехмерного пространства. Вы можете сравнить точки в пространстве с дополнительными измерениями с клетками вашего тела, каждая из которых содержит принадлежащую вам полную последовательность ДНК. Аналогично, каждая точка в вашем трехмерном пространстве должна быть хозяйкой полностью компактифицированной окружности. До сих пор мы рассматривали только одно дополнительное измерение, свернутое в окружность. Но все, что было сказано, должно выполняться и тогда, когда свернутое измерение принимает другую, вообще говоря, любую форму. Может случиться и так, что имеется два или более крохотных свернутых измерений любой формы. Все без исключения измерения, которые достаточно малы, будут для нас совершенно невидимыми. Рассмотрим пример с двумя свернутыми измерениями. Эти свернутые измерения могут принимать много разных форм. Мы выберем тор, имеющий форму бублика, в котором два дополнительных измерения одновременно свернуты в окружности. Это показано на рис. 19. Если обе окружности — та, которая навивается через дырку в бублике, и та, которая навивается вокруг самого бублика, — достаточно малы, мы никогда не увидим двух дополнительных свернутых измерений. Но это только один пример. В случае большего числа измерений имеется огромное количество возможных компактных пространств, т. е. пространств со свернутыми измерениями, отличающихся друг от друга конкретным способом, которым эти измерения свернуты. Одной категорией компактных пространств, важных для теории струн, являются многообразия Калаби — Яу, названные по именам итальянского математика Эудженио Калаби, первым предложившего эти особые формы, и уроженца Китая гарвардского математика Шин Тун Яу, показавшего, что эти формы математически возможны. В этих геометрических формах дополнительные измерения свернуты и закручены весьма необычным способом. Как и во всех случаях компактификации, измерения сворачиваются на малых расстояниях, но они переплетаются таким сложным образом, что это очень трудно нарисовать. Какую бы форму не принимали свернутые дополнительные измерения, и сколько бы их не было, в каждой точке вдоль бесконечных измерений будет находиться маленькое компактное пространство, содержащее в себе все свернутые измерения. Поэтому, если теоретики, занимающиеся струнами, правы, то везде в видимом пространстве — на кончике вашего носа, на северном полюсе Венеры, в точке на теннисном корте, куда вы послали ракеткой мяч во время последней подачи, — должно находиться шестимерное многообразие Калаби — Яу невидимого крохотного размера. В каждой точке пространства должна присутствовать многомерная геометрия. — 36 —
|