Но именно "анализ качеств", а не чисел и фигур, стал основным лейтмотивом множества разделов математики, родившихся в ХХ в. --- топологии, теории катастроф, некоторых теорий в нелинейной динамике. И здесь мы также видим общие проблемы. "Информационный джинн". Во множестве ситуаций принято жаловаться на недостаток информации, необходимой для конкретного анализа, принятия ответственных решений и т.д. Однако и нелинейная динамика, и историческая наука зачастую сталкиваются с прямо противоположной ситуацией. Не ясно, что делать с уже собранной информацией, что следует выделить и уточнить, а что "забыть". Типичные примеры дают данные, поступающие со спутников, с сейсмических станций, метеорологические наблюдения. Огромные массивы информации в этих важных сферах очень часто не дают ни понимания исследуемых процессов, ни возможностей для их прогноза. Громадные объемы данных вообще никогда не анализировались. Другими словами, упорядочение информации, выделение в ней "параметров порядка", анализ вопросов, которые можно задать, располагая этой информацией, выходят на первый план во многих приложениях нелинейной динамики. Можно ожидать, что скоро на эти рубежи выйдет и история. Когда "клиометрия" или "количественная история", так иногда называют направление, связанное с компьютерной обработкой исторических источников, сделает свое дело, и вста-newpage noindent нет вопрос "что дальше?", свое слово должна сказать теоретическая история. "Исторический подход" теории бифуркаций. Одним из основных инструментов современной нелинейной динамики является теория бифуркаций. Чтобы придать конкретный смысл понятию "бифуркация", надо понять, чем "одно" отличается от "другого" (того, что возникло после). Для простых моделей эти отличия удается выделить, их анализ для многих сложных систем --- нерешенная проблема [52]. В чем-то обсуждение этих проблем "нелинейщиками" напоминает дискуссии историков об укладах, формациях, классах, "европейском" и "азиатском" пути развития. Наверное, оно похоже на поединок Геракла с Антеем, в котором последний утратил силу и мощь, оторвавшись от надежной почвы. Характерный пример, демонстрирующий пользу "вымышленных параметров", перехода от одного класса объектов к более широкому классу систем, связан с анализом сценариев перехода от порядка к хаосу. Одним из наиболее интересных и сложных сценариев, обнаруженных к настоящему времени, является разрушение инвариантных торов. Принципиальной моделью в этой теории является отображение — 76 —
|