Вместо ящиков можно использовать также сходную процедуру. Это ничего не изменит с точки зрения воспроизведения простой суммы операций или произвольных связей. Можно также ввести некоторые «отношения», создавая некую констелляцию, содержащую простую сумму отношений. Можно также непосредственно использовать пространственные отношения. Такая «скопированная» структура дает возможность изучать процессы обучения и выполнения действий и выяснить, не упускаются ли при этом какие-нибудь очень важные осмысленные действия 1. Можно, конечно, вести обучение, формируя такую установку на подражание. Можно изучать психологические различия в трудностях обучения, запоминания, переноса. Похоже, что копии будут дольше заучиваться, скорее забываться, и при этом соответствующие ошибки окажутся по необходимости случайными и бессмысленными. Возможности уже описанного осмысленного переноса резко уменьшаются, а сам перенос по необходимости будет почти всегда слепым 2. 1 Один психолог — а он отнюдь не единственный, кто использовал этот подход, — попытался изучать психологию образования общих понятий и логических операций весьма сходным образом. Затем он пришел ко мне и сказал: «Теперь ты убедился, что я не чужд философии, что я не погряз в слепых экспериментах? Согласись, что я тоже философ, и что с помощью этих методов исследую самую суть логики и природу логических принципов». 2 См. Приложение 5, где рассматривается аналогичная проблема. (См. также: К a t o n a G. Organizing and memorizing. New York, Columbia University Press, 1940). — Прим. Майкла Вертгеймера. ГЛАВА 3Задача с вертикальными угламиВот элементарный геометрический вопрос. Две прямые линии пересекаются и образуют два угла а и b. Можете ли вы доказать их равенство? Рис. 56 Вероятно, вы изучали эту теорему в школе. Может быть, вы забыли ее — тем лучше. Попробуйте доказать ее, прежде чем вы прочтете то, что я описываю в этой главе. Возможно, тогда вы получите большее удовольствие от дальнейшего изложения. Задавая этот вопрос сообразительным детям и взрослым, часто сталкиваешься со следующими ответами. «О чем вы спрашиваете? Разве это не очевидно? Естественно, что углы равны; разве это не понятно каждому?» И если вы настаиваете, то можете получить ответ: «Это совершенно ясно; две прямые линии сначала сходятся, а потом расходятся в одном и том же направлении». Одно из основных затруднений при решении этой задачи заключается в том, что ученик не понимает — и не может понять — смысла вопроса. Он кажется искусственным, бессмысленным. Часто в такой ситуации не могут понять, зачем требуется доказательство; многие не понимают или не способны понять значения доказательства, потребность в котором возникла в ходе развития теоретической математики. — 91 —
|