Некоторые спрашивали: «Можно спросить у моего старшего брата? Он наверняка знает». Или: «Можно посмотреть ответ в учебнике геометрии?» Очевидно, это тоже является одним из способов решения задач. Третий тип. Некоторые начинали пространно рассуждать. Они вели разговор вокруг задачи, рассказывая об аналогичных ситуациях. Или же классифицировали ее каким-то образом, применяли общие понятия, относили задачу к какой-то категории или осуществляли бесцельные пробы. Четвертый тип. Однако в ряде случаев можно было наблюдать реальный процесс мышления — судя по чертежам, замечаниям, мыслям вслух.
74 деть площадь. Что-то здесь не так». На этом этапе некоторые из детей чертили фигуру, показанную на рис. 21. Рис. 21 В таких случаях я говорил: «Хорошо было бы сравнить величину площади параллелограмма с площадью прямоугольника». Ребенок беспомощно прекращал, а затем возобновлял попытки. В других случаях ребенок говорил: «Я должен избавиться от затруднения. Эту фигуру нельзя разделить на маленькие квадраты». Рис. 22 3) Здесь один ребенок неожиданно сказал: «Можете дать мне складной метр?» Я принес ему такой метр. Ребенок сделал из него параллелограмм, а затем превратил его в прямоугольник. Рис. 23 Мне это понравилось. «Ты уверен, что это правильно?» — спросил я. «Уверен», — ответил он. Только с большим трудом с помощью соответствующего чертежа 75 (рис. 24) мне удалось заставить его усомниться в правильности его метода. Рис. 24 Тут он сразу сказал: «Площадь прямоугольника гораздо больше — этот метод не годится...» 4) Ребенок взял лист бумаги и вырезал из него два равных параллелограмма. Затем со счастливым видом соединил их следующим образом. Рис. 25 Но он не знал, что предпринять дальше. Сам по себе этот шаг был прекрасной находкой (ср. решение с кольцом, с. 78). Замечу, что в ряде случаев я сам давал детям два образца фигуры. Иногда я сталкивался с такими реакциями: Рис. 26 Некоторые дети даже пытались наложить одну фигуру на другую. Такая помощь могла быть эффективной только при некоторых условиях. При каких же именно? — 54 —
|