31. Но были случаи, когда мышление вело прямо к цели. Некоторые дети с незначительной помощью или вообще без всякой помощи находили правильное, разумное, прямое решение задачи. Иногда после периода крайней 76 сосредоточенности в критический момент их лица светлели. Какое чудо — этот переход от слепоты к прозрению, к пониманию сути дела! Сначала я расскажу о том, что произошло с девочкой пяти с половиной лет, которой я вообще не оказывал никакой помощи при решении задачи с параллелограммом. Когда после короткой демонстрации способа определения площади прямоугольника ей предложили задачу с параллелограммом, она сказала: «Я, конечно, не знаю, как это сделать». Потом, после минуты молчания, добавила: «Нехорошо здесь, — и показала на область, расположенную Рис. 27 справа, — и здесь тоже, — и показала на область, расположенную слева. — Трудность связана с этим местом и с этим». Нерешительно сказала: «Здесь я могут исправить... но...» Вдруг она воскликнула: «Можете дать мне ножницы? То, что мешает там, как раз требуется здесь. Подходит». Она взяла ножницы, разрезала фигуру вертикально и перенесла левую часть направо. Другой ребенок аналогичным образом отрезал треугольник.
77 И она приводила левый угол «в порядок». Затем, глядя на другой край, она попыталась сделать там то же самое, но внезапно стала рассматривать его не как «лишнюю часты», а как «недостающую». Рис. 29 Встречались и другие действия. Девочка, которой я дал вырезанный из бумаги длинный параллелограмм (и в предыдущих примерах лучше начинать с длинного параллелограмма), вначале сказала: «Вся средняя часть в порядке, но края...» Она продолжала разглядывать фигуру, явно интересуясь ее краями, потом вдруг взяла ее в руки и с улыбкой превратила в кольцо, соединив края. Когда ее спросили, зачем она это сделала, она, удерживая своими маленькими пальчиками сомкнутые края, ответила: «Но ведь теперь я могу разрезать фигуру вот так, - и указала на вертикальную линию, расположенную где-то посередине, — тогда все будет в порядке». Наблюдались и несколько иные действия, но я не встречал ничего подобного тому, что предлагается в современных курсах математики — уменьшение нарушения посредством разрезания на горизонтальные ряды с высотой меньшей любого заданного бесконечно малого числа. Даже взрослые часто понимают эту процедуру с трудом. Операция разрезания на ряды со все меньшей в меньшей высотой, предложенная детям лет двенадцати и взрослым, вызывала у них забавные реакции. Считая такой способ «нечестным», некоторые продолжали ломать голову даже после того, как им показали, что после соответствующего горизонтального сдвига рядов вся фигура становится все больше и больше «похожей» на прямоугольник. Эта процедура предполагает переход к понятию бесконечно малой величины и к операции предельного перехода. К этому методу пришли только после длительного развития математики, видимо, в связи с задачами на определение площади криволинейных фигур. — 55 —
|