О творчестве в науке и технике

Страница: 1 ... 113114115116117118119120121122123 ... 139

16-4


лей, как правило, сразу же. Между тем ясно, что слепому, способному говорить, вовсе не требуется прибегать к языку жестов.

Аналогичный же барьер возникает, когда внимание испытуемого с вычислительной стороны вопроса переносится на грамматическую, этимологическую. Здесь мы имеем пример, обратный тем, которые были разобраны выше. Задача: «Как надо сказать: дважды два есть пять, суть пять, равно пяти или просто пять?»

Здесь барьер отделяет и устраняет из поля зрения как раз вычислительную сторону вопроса, намеренно фиксируя лишь его грамматическую сторону.

Как правило, барьер работает в этом случае у большинства опрашиваемых. Я задавал эту задачу специалистам-математикам, в том числе и зарубежным, и убеждался, что барьер работает и у них так же, как у обычных людей. Такова другая, еще более простая задача: «Как надо написать словами: пять и семь — адинна-дцать или одиннадцать?» Но это только для школьников!

На подобном же барьере-подмене построена задачка для детей младшего возраста: «Шел дождь и два студента. Сколько всего?»

Барьер-подмена фигурирует, например, в «Недоросле» Фонвизина, когда Митрофанушка на вопрос: «Дверь — какая часть речи?» — отвечает: «Котора дверь? Если эта, то прилагательное, а если та, что стоит в сарае, то пока существительное». Здесь грамматика подменяется отношением реальных вещей.

В заключение данного цикла барьеров приведем еще следующий, который нередко ставит в тупик опрашиваемого, поскольку его преодоление (решение задачи) требует быстрого переключения от одного порядка вычислительных операций к совершенно другому. Задача: «Я буду называть вам подряд целые числа, а вы быстро говорите, чему они равны в квадрате. Считаю: один в квадрате?» Ответ: «Один». — «Два в квадрате?» — «Четыре». — «Три в квадрате?» — «Девять». — «Четыре в квадрате?» — «Шестнадцать». — «Пять?» — «Двадцать пять». — «Шесть»? — «Тридцать шесть». — «Угол?» Встречный недоуменный вопрос: «Как это угол?» Мое пояснение: «Да вот так. Чему равен угол в квадрате?» Снова встречный вопрос: «Да как же его можно возвести в квадрат (то есть умножить на самого себя)?» И далеко не сразу испытуемый догадывается, что здесь совершается переход от арифметического действия к геометрическим

165


представлениям и что ответом будет: «90 градусов». Достаточно долгая операция возведения целых чисел в квадрат закрепляет барьер, что выражение «в квадрате» имеет только один смысл, а именно: «умноженное само на себя», что явно бессмысленно в отношении угла.

Барьеры замыкания. Это такие барьеры, которые предполагают, что задача должна решаться в определенных рамках и не выходить за их пределы, в то время как преодоление такого рода барьеров состоит именно в выходе за эти рамки.

— 118 —
Страница: 1 ... 113114115116117118119120121122123 ... 139