161 вет: «Восемь». Смысловая — «ни одной» (остальные улетят) . ~> Моя мать вспоминала, как один человек рассказывал о драке, в которой он участвовал: «Я ему — раз по морде, два — по другой!» Он, конечно, хотел сказать— «по другой щеке», но начатый счет — «раз, два» — отвлек мысль рассказчика от содержательной стороны события н заслонил ее. И последний барьер из того же рода, который нередко ставит в тупик и взрослых: бутылка с пробкой вместе стоят 11 копеек, а бутылка на 10 копеек дороже пробки Сколько стоит пробка? Обычно школьник отвечает сначала: «Одну копейку», а убедившись, что тогда бутылка будет стоить 11 копеек, а вместе с пробкой 12 копеек, он бросается в другую крайность: «Пробка ничего не стоит», — по тогда бутылка вместе с пробкой будут стоить 10, а не 11 копеек. Барьер состоит здесь в том, что заранее принимается во внимание только целое число копеек, а не дробное. Таковы барьеры, рассчитанные на то, что привычка вычислять заставляет испытуемых, не задумываясь, применять арифметический прием автоматически, не вдумываясь в смысловую, содержательную сторону заданной им задачи. Барьеры как нарочитое осложнение и запутывание. Продолжим анализ барьеров того же характера, рассчитанных на то, что испытуемый будет производить автоматически вычислительные операции. Особенность этих барьеров состоит в том, что в задачу преднамеренно вводятся посторонние, совершенно ненужные моменты с целью осложнить и запутать ее решение. Разберем несколько таких задач. Вот одна из них: мне теперь столько лет, сколько тебе будет тогда, когда мне будет в два раза больше, чем тебе теперь. Сколько же нам лет? Эту задачу даже повторить бывает трудно, хотя она элементарно проста А вот другая аналогичная задача. Расстояние между А и В 600 километров. Из А в В вышел поезд и движется со скоростью 60 километров в час, а навстречу ему из В и А — другой поезд со скоростью 40 километров час. Между обоими поездами летает стрекоза со скоростью 100 километров в час. Долетев до поезда, вышедшего из Л, она тут же возвращается к поезду, вышедшему из В, и снова летит обратно и т. д., пока оба поезда не встре- 102 тятся. Спрашивается: сколько километров пролетит стрекоза? Барьер здесь толкает на то, чтобы прослеживать один за другим уменьшающиеся отрезки пути, которые проделывает стрекоза, и суммировать их. Между тем есть более простое решение, которое маскируется барьером, а именно: определить время до встречи поездов (и следовательно, время пребывания стрекозы в полете). — 116 —
|