?max = ?0bl max . Опыт свидетельствует о том, что в реальных кристаллических телах величина l max оказывается небольшой, приблизительно равной 10-3—10-2 см; пройдя такой путь, дислокации «выходят из игры» по разным причинам: либо достигают границы зерна, либо выходят за пределы образца, либо, встретив стопор, теряют подвижность, а следовательно, и способность вносить вклад в формирование кристалла. При ?0 ? 107 см-2 и b ? 3• 10-8 см оказывается, что ?max = 10-4 - 10-3. А в действительности, благодаря движению дислокаций, кристалл может деформироваться в несравненно большей степени. Это и означает, что в процессе деформирования в нем, видимо, должны рождаться новые подвижные дислокации. Когда речь идет о размножении живых организмов, имеется в виду увеличение числа особей. В случае дислокаций имеется в виду нечто иное, а именно увеличение их плотности. А так как плотность дислокаций ?0 = ?/V , где ? — суммарная протяженность дислокационных линий в объеме V , то под размножением следует понимать увеличение ?. Итак, оказывается, что размножение дислокации есть попросту ее удлинение. Вот теперь можно поговорить о конкретном механизме размножения. Об одном из многих. В литературе он называется механизмом Франка — Рида. Практически все необходимое для того, чтобы понять этот механизм, уже было рассказано в очерке о «росе», тормозящей движение дислокаций. После того, как участок дислокационной линии, заторможенный двумя неподвижными «росинками»-стопорами, напряжением ? > ? max будет «продавлен» сквозь стопоры, в плоскости скольжения он превратится в замкнутый круг и в участок дислокационной линии между стопорами. Этот участок так же может превращаться в круг, повторив предыдущий цикл. Он окажется очагом размножения дислокационной линии, так как ее суммарная длина в этом процессе возрастает. Разумеется, до тех пор, пока действует напряжение, способное «продавить» заторможенный участок дислокационной линии сквозь стопоры. Рисунок это отчетливо иллюстрирует. В кристалле могут быть и одиночные замкнутые петли, и полупетли, которые обоими концами выходят на поверхность кристалла. Их расширение или сжатие также приводит к размножению или гибели дислокаций. Коротко о механизмах «гибели» дислокаций. Один из механизмов может быть обратным тому, который приводил к размножению. Действительно, если перестать дуть в трубку, на торце которой расположен мыльный пузырь, он через трубку выдавит из себя газ и «схлопнется». Подобно этому «схлопнется» и замкнутая дислокационная линия («петля»), если внешние напряжения перестанут ее растягивать. То же относится и к «полу-петле», которая не замкнута на себе, а выходит на поверхность кристалла. — 75 —
|