Итак, при деформировании кристалл может звучать. Возникает большое количество совсем не риторических вопросов. Почему возникает звук? Почему он подобен не гулу сирены, а тиканью часов. В Ленинградском физико-техническом институте об образцах Иоффе и Эренфеста говорили: цинковые часы. И еще: нельзя ли повлиять на это звучание? Нельзя ли его использовать, дать ему выход в практику? Будем разбираться в сформулированных вопросах, так сказать, в порядке их поступления. Начнем с сотворения модели явления, с поисков аналогий, которые могли бы помочь ответить на интересующие нас вопросы. Вспомним, что пластическая деформация сопровождается движением дислокаций. Естественно предположить, что звучание кристалла и движение в нем дислокаций — явления не независимые. Тем более, что сразу же напрашивается аналогия: движение пули в воздухе сопровождается «акустической эмиссией», или, попросту говоря, свистом. С пулей и воздухом все ясно: в пуле, имеющей массу m и летящей со скоростью ? , запасена кинетическая энергия, та самая, которая, как известно, равна m? 2/ 2. Постепенно теряя эту энергию на преодоление сопротивления воздуха, пуля возбуждает в нем упругие волны, которые нашим ухом воспринимаются, как свист. Для того чтобы задуманная нами аналогия оказалась состоятельной, нам нужно подобно массе пули представить себе массу дислокации — величину не совсем обычную. Измерять ее в граммах нельзя, видимо, ее следует измерять в граммах на единицу длины линии дислокации. Без доказательств сообщу читателю, что эта величина определяется произведением плотности вещества кристалла d на квадрат вектора Бюргерса: db 2. Эта формула не должна вызвать подозрений, все в ней разумно: присутствует и характеристика кристалла (в виде плотности вещества), и характеристика дислокации в виде вектора Бюргерса, который входит в квадрате, символизирующем физически оправданную независимость массы дислокации единичной длины от того, как ориентирован ее вектор Бюргерса. Если бы вектор Бюргерса в формулу, определяющую массу дислокации, входил в первой степени, изменение его ориентации на противоположное меняло бы знак массы, т. е. она могла бы стать отрицательной, что нелепо! Итак, кинетическую энергию дислокации единичной длины можно записать в виде W ? = db 2? 2/2 . А дальше все, как с пулей: дислокация движется в кристалле, теряет свою кинетическую энергию, эта энергия переходит в энергию упругих волн в кристалле, и кристалл звучит. Все ясно! Здесь, пожалуй, рассуждения «по аналогии» следует прервать. Дальше опасно, легко можно заблудиться. Ну, например, летящая пуля свистит непрерывно, а при пластическом деформировании слышатся потрескивания. Удовлетворимся тем, что аналогия помогла нам понять основное: движущаяся в кристалле дислокация возмущает решетку, передает ей часть своей энергии, в решетке возбуждаются упругие волны, т. е. звук. — 77 —
|