Обсудим случай, когда крупинки почему-либо вообще не могут двигаться и по отношению к дислокации окажутся неподвижными стопорами, мешающими ее движению. А дислокация должна была бы двигаться, так как извне к ней приложено некоторое напряжение. Оно должно вызвать пластическое деформирование кристалла, которое не может происходить, если дислокации неподвижны. Под влиянием приложенных напряжений участок дислокационной линии, расположенный между двумя стопорами, должен будет изгибаться, подобно натягиваемой тетиве лука. Но изгиб дислокационной линии означает ее удлинение, а следовательно, увеличение связанной с ней энергии. Это вполне достаточное основание для того, чтобы дислокация сопротивлялась изгибающим усилиям, чтобы появлялось напряжение, противодействующее тому, которое приложено извне. Иной образ, иная модель: все происходящее с застопоренным участком дислокационной линии очень подобно тому, что происходит с пленкой мыльного пузыря, выдуваемого на соломинке. По мере того как плоская мембрана из мыльной пленки, закрывающей торец соломинки, начинает выгибаться под влиянием давления газа, увеличивается противодавление, обусловленное изгибом мембраны. Это давление, как известно, равно Р = 2Р л = 4?/R , где Р л — лапласовское давление, множителем 2 учтено наличие двух поверхностей у мыльной пленки, R — радиус ее изгиба, ? — поверхностное натяжение. Легко себе представить, что радиус изгиба пленки меняется от бесконечной величины, когда пленка в виде плоской мембраны перекрывает торец соломинки, до величины, соответствующей радиусу раздутого пузыря. Минимальное значение радиус изогнутой пленки принимает тогда, когда она становится полусферической, опирающейся на периметр соломинки, как на экватор: Rтiп = d/ 2 , d — диаметр соломинки. Из рассказанного следует, что для того, чтобы раздуть мыльный пузырь, надо в трубке создать давление, превосходящее Рmах = 8?/d. При таком давлении раздуваемая пленка станет полусферической, и ее дальнейший рост, когда R > d /2 , требует уже меньшего давления газа. Теперь, пожалуй, ясно: для того чтобы «продавить» участок дислокационной линии в зазоре между двумя неподвижными стопорами, расстояние между которыми l , нужно преодолеть некоторое максимальное, создаваемое дислокацией, напряжение ?mах . Расчет показывает, что ?mах определяется формулой ?mах = 2Gb/l , подобной той, которая определяет Ртах для мыльного пузыря. Дело в том, что ? — величина поверхностного натяжения пленки, а Gb — величина, пропорциональная линейному натяжению дислокационной линии. Так как G ? 1012 дин/см2, b ? 3. 10-8 см, то при l ? 10-4 см оказывается ?mах ? 6. 108 дин/см2. То есть для того, чтобы заставить дислокацию двигаться, надо приложить к ней очень большие напряжения. То же другими словами: если росинки-стопоры расположены вдоль дислокации и если к дислокации приложено напряжение ? < ?mах , она окажется неподвижной. Очень важное заключение! Композиторам сплавов оно подсказывает отличную идею: если хочешь воспрепятствовать пластичности кристалла, введи в него такую примесь, которая в виде росинок осядет вдоль дислокаций и застопорит их. Хочешь добиться сопротивляемости кристалла деформированию вплоть до высоких напряжений, посади на дислокации стопоры-росинки почаще. Оставим в стороне вопрос о том, как эти идеи осуществить в конкретной ситуации. «Как» — это вопрос очень конкретный. Его решают технологи применительно к конкретным сплавам. А вот общая идея застопорить дислокации выделениями — это то, что заслужило внимание и ученых, и технологов всех рангов. — 71 —
|