Живой кристалл

Страница: 1 ... 7475767778798081828384 ... 120

Экспериментальных работ по акустической эмиссии кристаллов, обусловленной дислокациями, очень не много. Я расскажу лишь об одном опыте, о том, который мне и понравился больше иных, и вызвал полное к себе доверие. Поставлен он был харьковскими кристаллофизиками В. С. Бойко, Р. И. Гарбером и их сотрудниками. Авторы этого опыта воспользовались тем, что во многих кристаллах, в частности и кристалле кальцита, с которым они и экспериментировали, под влиянием извне приложенной сосредоточенной нагрузки (ее можно создать нажатием на лезвие клина, касающегося поверхности кристалла) получаются скопления большого количества однотипных дислокаций.

Они образуют стенку, концы которой касаются поверхности кристалла. При снятии внешней нагрузки эти скопления покидают кристалл, с большой скоростью дислокации выходят за его пределы. Акт выхода сопровождается сильной акустической эмиссией. Возникающий звуковой сигнал очень четко можно зарегистрировать осциллографом. Для того чтобы не принять желаемое за действительное, авторы опыта с помощью скоростной кинокамеры следили за выходом дислокаций. Момент выхода дислокаций и момент всплеска звука совпали. Убедительный опыт!

Теперь о практических приложениях, точнее, об одном из них, очень важном и очень красивом. В 1959 г. немецкий физик Кайзер, изучая акустическую эмиссию металлов, обнаружил, что, если образец, который под влиянием определенной внешней нагрузки звучал, освободить от этой нагрузки, а потом повторно нагрузить, он зазвучит лишь при условии, если повторная нагрузка превзойдет начальную. В физической литературе это явление именуется «эффект Кайзера». Зная о нем, представьте себе, что некоторый полый сосуд мы герметически закроем металлической мембраной и опустим его в море на некоторую глубину, где к мембране будет приложено напряжение, обусловленное гидростатическим давлением,

?h = dgh,

(d — плотность воды, g — ускорение свободного падения, h — глубина погружения). В воде, согласно Кайзеру, мембрана «вызвучит» все, что должна «вызвучать» при напряжении ?h . После извлечения из воды ее следует вынудить начать звучать под влиянием внешней, точно измеряемой нагрузки ?* > ?h . Этим самым мы узнаем у мембраны, на какой глубине она находилась. Очевидно, на глубине h = ?*/dg. Таким образом, способность кристалла издавать звуки может быть использована для создания глубиномеров. Я рассказал лишь об общей идее, на которой основан акустический глубиномер. При ее осуществлении возникает много трудностей и ограничений. Трудности преодолеваются, ограничения учитываются.

— 79 —
Страница: 1 ... 7475767778798081828384 ... 120