Предполагается, что теория струн, почти по определению, будет иметь дело с вышеописанными проблемами. Поскольку «фундаментальный строительный блок теории струн является не точкой, а скорее одномерной петлей, то естественно полагать, что классическая геометрия не может корректно описывать струнную физику, — объясняет Брайан Грин. — Однако сила геометрии не теряется. Напротив, теория струн, по-видимому, будет описываться модифицированной формой классической геометрии с модификациями, исчезающими по мере того, как типичный размер в данной системе становится большим по сравнению с масштабом струн — шкалой длин, которая, как ожидается, будет находиться в пределах нескольких порядков от планковской шкалы».[289] Предыдущие теории фундаментальной физики рассматривали свои основные строительные блоки — материальные частицы — как бесконечно малые, нульмерные точки — объекты, с которыми ученые того времени не могли адекватно работать ввиду слабости математического аппарата (современная математика также не может справиться со всеми проблемами). Струны представляют собой частицы не бесконечно малого размера, так что квантовые флуктуации, которые создавали столько хлопот для классической геометрии на ультрамалых масштабах, распределяются по значительно большей области, ослабляя свое влияние, что делает их более контролируемыми. Таким образом, раздражающую проблему сингулярностей в физике, где кривизна и плотность пространства-времени растут до бесконечности, можно ловко обойти. «Вам никогда не добраться до точки, где происходят катастрофы, — говорит Натан Зайберг из Института перспективных исследований. — Теория струн не позволит вам».[290] Рис. 14.2а. Это фотография под названием «Голубой мрамор» показывает, что если взглянуть на нашу планету с большого расстояния, то ее поверхность выглядит гладкой и безупречной, как мрамор (Центр космических полетов Годдарда, НАСА) Даже если катастрофа предотвращена, все равно поучительно взглянуть на ситуацию, где вы были «на волосок от гибели, которой вам чудом удалось избежать». «Если вы хотите изучить ситуации, где геометрия не работает, вам необходимо выбирать те случаи, в которых она постепенно выходит из строя, — говорит Эндрю Строминджер. — Один из лучших способов выполнить такой анализ ситуаций заключается в изучении пространств Калаби-Яу, потому что в этих пространствах мы можем выделить области, где пространство-время поломано, в то время как остальные области остаются неизменными».[291] — 266 —
|