Теория струн и скрытые измерения Вселенной

Страница: 1 ... 259260261262263264265266267268269 ... 302

Таким образом, пионеры науки, подобные Лобачевскому, Бойяи и Гауссу, не отбросили все, что было сделано до них, а просто открыли дверь новым возможностям. Их новаторские работы способствовали созданию более экспансивной геометрии, так как ее принципы не ограничивались плоскостью, а могли быть применимы ко всем криволинейным поверхностям и пространствам. Хотя элементы евклидовой геометрии по-прежнему сохраняются в этой расширенной, более общей геометрии. Например, если вы берете небольшой участок земной поверхности, скажем, на Манхэттене, то улицы и проспекты можно считать параллельными и перпендикулярными для всех практических целей. Евклидова геометрия достоверно описывает ограниченную область, где эффектами кривизны можно пренебречь, но не работает, если вы смотрите на планету в целом. Можно также рассмотреть треугольник, нарисованный на воздушном шаре. Когда шар относительно небольшой, то сумма углов треугольника больше 180 градусов. Но если мы будем раздувать воздушный шар, то радиус кривизны (r) будет становиться все больше и больше, а сама кривизна (равная 1/r2) — все меньше и меньше. При приближении r к бесконечности, кривизна будет стремиться к нулю, а сумма углов треугольника в пределе будет точно равна 180 градусам. Как выразился Адамс, «это именно та ситуация на ровной плоскости, в которой евклидова геометрия является чемпионом. Она работает довольно хорошо и на сфере с небольшой кривизной, но, если вы надуваете воздушный шар и кривизна сферы становится все меньше и меньше, то соответствие евклидовой геометрии становится все лучше и лучше. Таким образом, мы видим, что евклидова геометрия действительно является только частным эпизодом более общего сюжета, когда радиус кривизны является бесконечным, сумма углов треугольника составляет 180 градусов и все постулаты евклидовой геометрии применимы».[288]

Аналогично теория тяготения Ньютона была чрезвычайно практической теорией в том смысле, что она давала нам простой способ вычисления силы тяжести, действующей на любой объект в системе. В частности, она работала хорошо до тех пор, пока объекты, о которых шла речь, не двигались слишком быстро, или в ситуациях, когда гравитационный потенциал не слишком велик. Затем появился Эйнштейн со своей новой теорией, в которой гравитация рассматривается как следствие искривления пространства-времени, а не как сила, действующая между объектами, и мы поняли, что теория тяготения Ньютона была только небольшим фрагментом этой общей картины и она хорошо работает только в предельных случаях — когда объекты двигаются медленно, а гравитация является слабой. Таким образом, мы видим, что общая теория относительности, как следует из названия, на самом деле является общей: это обобщение не только специальной теории относительности Эйнштейна путем включения гравитационных эффектов, но и обобщение ньютоновской теории тяготения.

— 264 —
Страница: 1 ... 259260261262263264265266267268269 ... 302