Эдвард Виттен поддерживает эту точку зрения. «То, что мы сейчас называем “классической геометрией” значительно шире, чем то, что понимали под геометрией всего столетие назад, — говорит он. — Я полагаю, что теория на планковском масштабе, весьма вероятно, включает в себя новый вид обобщенной геометрии или расширение этого понятия».[285] Обобщения такого рода, связанные с теорией, действительной в определенной области, и расширение сферы ее применимости на еще большую область делались в геометрии неоднократно. Вспомним создание неевклидовой геометрии. «Если бы вы спросили Николая Лобачевского о геометрии его молодости», то есть геометрии конца XVIII века, то «он, вероятно, перечислил бы пять постулатов Евклида, — говорит Адамс. — Если бы вы спросили его позже, когда он стал великим ученым, то он мог бы сказать, что существует пять постулатов, но, может быть, они не нужны нам все».[286] В частности, он выделил бы пятый постулат Евклида о том, что параллельные линии никогда не пересекаются, как необязательный. В конце концов, именно Лобачевский понял, что, исключив постулат о параллельных, он создал совершенно новую геометрию, которую мы называем гиперболической геометрией. Но из того, что параллельные линии не пересекаются на плоскости, то есть в области, где работает евклидова геометрия, вовсе не следует, что это же будет иметь место на поверхности сферы. Например, мы знаем, что все меридианы на глобусе сходятся на северном и южном полюсах. Аналогично, хотя сумма углов треугольника, нарисованного на плоскости, всегда равна 180 градусам, на поверхности сферы сумма этих углов всегда больше 180 градусов, а на поверхности седла их сумма меньше 180 градусов. Лобачевский опубликовал свои спорные идеи по неевклидовой геометрии в 1829 году, и они были похоронены в малоизвестном русском журнале «Казанский вестник». Несколько лет спустя венгерский математик Янош Бойяи опубликовал свой собственный трактат по неевклидовой геометрии, но работа, к сожалению, стала приложением к книге, написанной его отцом, математиком Фаркашем Бойяи. Примерно в то же время Гаусс разрабатывает аналогичные идеи в области дифференциальной геометрии. Он сразу понял, что эти новые понятия криволинейных пространств и «внутренней геометрии» переплетаются с физикой. «Геометрию следует относить не к арифметике, которая является чисто априорной наукой, а к механике», — говорил Гаусс.[287] Как мне кажется, он имел в виду, что геометрия, в отличие от арифметики, должна опираться на эмпирическую науку, а именно на физику, которая в то время называлась механикой, чтобы ее описания были весомыми. Гауссова внутренняя геометрия поверхностей заложила фундамент для римановой геометрии, которая, в свою очередь, привела к блестящим идеям Эйнштейна о пространстве-времени. — 263 —
|