Теория струн и скрытые измерения Вселенной

Страница: 1 ... 111112113114115116117118119120121 ... 302

Большинство струнных теорий, разработанных на тот момент, страдали наличием аномалий или несовместимостей, делающих все их предсказания бессмысленными. Эти теории, к примеру, приводили к возникновению неверного типа лево-правой симметрии — несовместимой с квантовой теорией. Ключевой прорыв был сделан Майклом Грином, в то время работавшим в Колледже Королевы Марии в Лондоне, и Джоном Шварцем из Калифорнийского технологического института. Основная проблема, которую удалось преодолеть Грину и Шварцу, относилась к так называемому нарушению четности — идее о том, что фундаментальные законы природы несимметричны в отношении зеркального отражения. Грин и Шварц обнаружили способ формулирования теории струн в таком виде, который подразумевал, что нарушение четности в системе действительно имеет место. Квантовые эффекты, из-за которых в теории струн возникали всевозможные несоответствия, в десятимерном пространстве удивительным образом взаимно уничтожились, породив тем самым надежды на то, что именно эта теория и является истинной. Успех Грина и Шварца обозначил начало того, что впоследствии было названо первой струнной революцией. То, что им удалось обойтись без аномалий, позволило говорить о способности данной теории привести к объяснению вполне реальных физических эффектов.

Отчасти задача исследователя состоит в том, чтобы убедиться в способности теории струн дать ответ на вопрос: почему Вселенная именно такова, какова она есть? Этот ответ должен объяснить и причину, по которой пространство-время, в котором мы живем, выглядит четырехмерным, в то время как теория настаивает на его десятимерности. В теории струн это кажущееся несоответствие объясняется компактификацией . Это понятие не является совершенно новым, поскольку Калуца и Клейн (особенно Клейн) уже предполагали, что дополнительное измерение в их пятимерной теории на самом деле компактифицировано — сжато до столь малых размеров, что увидеть его было попросту невозможно. В аналогичной ситуации оказались и струнные теоретики — только они имели в своем распоряжении не одно, а шесть «лишних» измерений.

Слово «лишние» вводит в заблуждение, поскольку мы на самом деле не пытаемся избавиться от каких-либо измерений. Задача состоит в том, чтобы неким замысловатым образом свернуть эти измерения — придать им строго определенную геометрическую форму, которая позволила бы произвести магический акт компактификации, составляющий одну из основных задач теории струн. При этом количество возможных геометрий, ведущих к различным способам компактификации, чрезвычайно велико.

— 116 —
Страница: 1 ... 111112113114115116117118119120121 ... 302