Теория струн и скрытые измерения Вселенной

Страница: 1 ... 108109110111112113114115116117118 ... 302

Мамфорд поднял этот вопрос во время своей лекции в Калифорнийском университете в Ирвине в сентябре 1976 года; я также присутствовал на ней, как раз незадолго до этого закончив работу над доказательством гипотезы Калаби. Во время доклада Мамфорда мне стало понятно, что я уже сталкивался с этой задачей раньше. Поэтому в процессе дискуссии, возникшей по окончании лекции, я сказал Мамфорду, что смогу доказать этот более сложный случай. Придя домой, я проверил свои расчеты и обнаружил, что, как я и подозревал, этот тип неравенства я пытался использовать в 1973 году для опровержения гипотезы Калаби; теперь же я мог использовать теорему Калаби-Яу для доказательства этого неравенства. Более того, доказав упомянутое выше утверждение, я теперь мог воспользоваться его частным случаем, а именно случаем равенства (второй класс Черна, умноженный на три, равен квадрату первого класса Черна) для доказательства гипотезы Севери.

Эти две теоремы, открывшие путь к доказательству гипотезы Севери и более общего неравенства, иногда называемого неравенством Богомолова-Мияока-Яу (я привожу полное название, чтобы выразить признательность двум другим математикам, внесшим вклад в решение этой задачи), стали первыми побочными результатами доказательства гипотезы Калаби, за которыми последовали многие другие. Гипотеза Калаби, по сути, оказалась намного обширнее, чем я считал до этого. Она применима не только к случаю нулевой кривизны Риччи, но и к случаям постоянной отрицательной и постоянной положительной кривизны. Никто до сих пор не исследовал случай положительной кривизны в наиболее общем виде, для которого гипотеза Калаби заведомо ложна. Я сформулировал новую гипотезу, определяющую условия, при которых метрика с положительной кривизной Риччи может существовать. На протяжении последних двух десятилетий многие математики, в том числе и Дональдсон, внесли значительный вклад в доказательство этой гипотезы, но окончательного доказательства до сих пор нет. При этом мне удалось исследовать случай отрицательной кривизны как часть общего доказательства гипотезы Калаби, независимо от меня этот же результат был получен французским математиком Тьерри Обеном. Решение, найденное для случая отрицательной кривизны, позволило показать существование широкого класса объектов, называемых многообразиями Кэлера-Эйнштейна, создав тем самым новые области геометрии, оказавшиеся необычайно плодотворными.

Справедливости ради стоит сказать, что я плодотворно провел время, посвященное поиску непосредственных применений гипотезы Калаби, — я доказал порядка полудюжины теорем. Оказалось, что одно лишь знание того, что определенная метрика существует, уже приводит к огромному числу следствий. Это знание можно было использовать для дедуктивного рассуждения и получить топологию многообразия, даже не зная точного значения метрики. И напротив, зная свойства многообразия, можно предсказать некоторые его уникальные особенности — подобно тому как, не зная всех деталей, можно сделать определенные выводы и о колоде карт, например об общем числе карт и маркировке каждой из них, или даже о строении Галактики. Как мне кажется, подобные возможности, предоставляемые математикой, представляют собой нечто сверхъестественное и говорят даже больше о ее силе, чем в тех ситуациях, когда каждая из деталей нам известна.

— 113 —
Страница: 1 ... 108109110111112113114115116117118 ... 302