пропорционально не отношению P/R, а его логарифму. Брадвардин показывает, что при этом устраняется ограничение Аристотеля P > R на возможность возникновения движения. Согласно закону Брадвардина, случай P = R имеет смысл, так как логарифм единицы равен нулю. В «Трактате о континууме», написанном между 1328 и 1335 гг., Брадвардин обращается к понятиям времени и движения. Время он рассматривает как бесконечный, последовательный континуум, который измеряет следование и может быть делим до бесконечности. Движение есть прохождение пространственного континуума во временном: линия может быть проходима с разной скоростью. В то же время, предвидя возможные возражения, Брадвардин проводит различие между «качеством движения», т. е. скоростью, и «количеством движения», т. е. его продолжительностью. Движения могут не различаться по «качеству», но различаться по «количеству» (т. е. по продолжительности или кратковременности). Закон Брадвардина был с одобрением принят многими, хотя и не всеми учеными XIV в. Подчеркнем, что этот закон содействовал укреплению представления о скорости как об отвлеченном отношении, в определение которого не входит ни понятие времени, ни понятие пути. Фундаментальные понятия кинематики, такие, как мгновенная скорость и ускорение, появляются в XIV в. в связи с исследованием неравномерного движения. Развитие этих идей связано с новым направлением в науке — учением о «широтах форм» или «конфигурации качеств» (оно называлось также учением «о равномерности и неравномерности интенсивностей» или «об интенсификации и ремиссии качеств»). Истоки этого нового направления были связаны со спорами о логико-философском понятии «формы», восходящими к Аристотелю. Учение о «широтах форм» развивалось и в богословии, где обсуждались вопросы об «интенсификации и ремиссии» благодати, и в математике и механике, в применении к которым это учение содержало прообразы идей функциональной зависимости и ее графического изображения. Математизация учения «об интенсивности качеств» происходила как в арифметико-алгебраической форме — в том виде, как это делалось учеными Оксфордской школы и в Мертон-колледже XIV в., так и в геометрической форме, как это делали представители Парижской школы. Итальянские ученые XV—XVI вв. сочетали оба эти пути. Направление Оксфордской школы получило в 30-х годах XIV в. название «учения о калькуляциях», а его авторы — «калькуляторов». «Учение о калькуляциях» разрабатывалось в труде Уильяма Хейтесбери «Правила решения софизмов», в трактате Ричарда Суисета (Суайнсхеда) «О калькуляциях», в работе Джона Дамблтона «Сумма логики и физики». — 46 —
|