Каждая панель включает изображение стоящего сановника, кроме первой, на которой он же представлен сидящим перед столиком с жертвенными хлебцами (?). А это могло свидетельствовать о его жреческом сословии. Небольшие усики, которые полагалось носить архитекторам, показывают, что он является зодчим, а присутствующие на всех панелях письменные принадлежности характеризуют его как писца-вельможу по прутьямжезлам, которые он держит в руках. Жезлы эти также сопровождают его на всех панелях. Но если малый везде, кроме первой панели, имеет как бы одинаковую длину, то большой, более похожий на прут, чем на жезл, изображен на всех панелях различной длины. Причины этого различия скрыты. По-видимому, первым обратившим внимание на то, что длины жезлов панели 13 подчинены пропорции 1: 5, что равнозначно соотношению между малой стороной и диагональю прямоугольника ДК со сторонами 1x2, был И. Шевелев. (Как уже отмечалось выше, такой прямоугольник назван И. Шмелевым двусмежным квадратом.) Эти отношения заложены, например, в комплексе гробницы Джосера, в погребальной камере Хеопса и даже в плане города Мемфиса (6,0x12 км), т.е. довольно часто встречаются в различных сооружениях Древнего Египта. Именно диагональ этого прямоугольника можно двумя операциями циркуля разделить на три иррациональные части, кратные золотому числу: 0,618; 0,382; 0,118. Интересно, что это деление И. Шмелев обнаружил на панелях, современная математика его не знала. Отталкиваясь от этих отношений, И. Шмелев на основе евклидовой геометрии провел анализ структурных элементов всех оставшихся панелей и доказал, приняв за модуль ширину панели, что расстояния между этими элементами описываются величинами, кратными золотым пропорциям [8]. (Замечу, что до этой работы знание золотых пропорций архитекторами пирамид египтология не регистрировала.) Я не буду рассматривать найденные соотношения и повторять проведенные им расчеты. Они частично использовались в работе [9] и тоже частично относятся к размерам измерительных инструментов. Несколько отвлекусь от описания саженей и покажу, что некоторые числовые коэффициенты пропорций между фигурами деревянных панелей имеют величину, равную числам матрицы 3. Выпишу их со схем панелей 10-13, из работы И. Шмелева [8], и сопоставлю с числами в окрестностях главной диагонали матрицы 5 (числа выделены на ней жирным шрифтом):
|