Золото Древней Руси. Русская матрица - основа золотых пропорций

Страница: 1 ... 2728293031323334353637 ... 82

И если конструкция имеет вурфное отношение трехчленного деления, то как бы ни перемещался наблюдатель относителъно ее, угол зрения А, В и т. д. всегда будет иметь одно и то же значение вурфа. На рис. 9 W=1,333 (рис.9 взят из [15]), и движущийся наблюдатель будет воспринимать постоянно меняющуюся, остающуюся эстетически совершенной, гармоничную конструкцию.

Именно гармоничность архитектурных сооружений как некоторых аналогов природных образований вписывается в пространственные и энергетические взаимодействия природы и обусловливает благотворное влияние Среды на психическое и социальное состояния человеческого общества.

Рис.9. Вурфное пропорционирование

«Если же, как справедливо отмечает А.А. Пилецкий [13], пропорции окружающих нас произведений архитектуры принадлежащ, к случайным семействам, как в большинстве современных сооружений, то человек оказывается в среде, пропорциональная структура которой по своей симметрии ему не свойственна. Такая Среда, не обладающая ни одной из групп характеристических симметрии человека, чаще всего не воспринимается им, а нередко отвергается. Вот где корень неблагоприятного психофизического воздействия Среды на человека, а не только в том, что жилые дома представляют собой набор однотипных "коробок" ».

Мы остановились подробно на разработке и применении вурфов в биологии и архитектуре, во-первых, потому, что они очень наглядны и отображают процесс взаимосвязи явлений во времени и в движении, а во-вторых, потому, что применение системы вурфов находится в стадии становления и не вышло, по-видимому, за пределы научных направлений.

Таблица 5 Серия Пашена

Нахождение золотого вурфа W=1,309 и вурфа W=1,250 на основе золотых пропорций следует отнести к числу выдающихся научных достижений В.Петухова. Но природа не ограничивается только этими вурфами и только золотой пропорцией. Все числовые структуры диагоналей русской матрицы — числа базисных вертикали и горизонтали при любых знаменателях также образуют свои вурфы и по пропорции (9) и по бесчисленному количеству других диагональных пропорций, которые в общей форме могут быть записаны следующим образом: имеем степенной числовой ряд, у которого каждое последующее число от базисного есть результат умножения на постоянный знаменатель, свой для каждой диагонали:

а, b, с, d,..., k, l, m, ...,s,....

(10)

Тогда этот ряд образовывает бессчетную систему вурфов, и каждый из этих вурфов может оказаться аналогом некоторого процесса или структуры:

W(а,b,...,s) = (а+b+...+d(b+с+...+k)(с+d+...+l) х
х (m+n+... +s).../(b+с+... +k)(а+b+с+... +s).

— 32 —
Страница: 1 ... 2728293031323334353637 ... 82