(11) |
Правая часть уравнения (11) может содержать различные комбинации степенных чисел как в числителе, так и в знаменателе. Причем, сами числа также могут возводиться в степени при непременном условии пропорциональной последовательности как возведения, так и порядка их расположения. Например, следующий вурф для Ф находится из уравнения:
W(Ф, Ф3, Ф9) = (1+Ф3)(Ф3+Ф9)/Ф3(1+Ф3+Ф9).
Ряд (11) характеризуется тем, что уже три последовательных числа, взятые в любой части ряда, определяют его степенную пропорциональность, что и обусловливает нахождение характеристических вурфов любой диагонали по этим трем числам. А это достаточно веское основание для выделения числа 3 из всего ряда натуральных чисел.
Значение вурфа и возможность его применения в биологии показана в работе [14], в архитектуре — в работах [10,13,15], однако, это весьма скромное начало. Вурф — понятие общенаучное и обусловливает гармоничное пропорционирование всех процессов и структур природы и не только по золотому сечению. Не случайно об этом упоминает А.А. Пилецкий [15], когда отмечает, что наличие пропорций золотого сечения в основных размерах храма Василия Блаженного просматривается только в сооружении церкви Покрова, а в остальном окружении не замечается, и, тем не менее, весь ансамбль пронизан строгой соразмерностью и пропорциональностью. И это достигается, по-видимому, применением не только золотого вурфа. Приведем пример наличия вурфных отношений в пропорциях спектральных линий водорода. Наиболее известными спектральными линиями водорода являются серии Лаймана, Бальмера, Пашена. Запищем их в таблицу 5.
Таблица 5.
Серия Лаймана |
Серия Бальмера |
Серия Пашена |
Просчитав величину вурфов по уравнению (9) последовательно снизу вверх по каждому столбцу, найдем, что величина эта для каждого результата своя и в целом для всех линий варьируется от 1,33355 до 1,3764, т.е. в пределах 3%. Варьирование можно объяснить несколькими способами, но наиболее вероятное объяснение, что водородный атом испускает много фотонов, как бы не входящих в эти серии, и их отсутствие изменяет величину вурфа. Кроме того, на «расплывание» вурфа оказывают влияние и особенности испускания фотонов в различных физических процессах.
Теперь, имея вурф водородных линий, определим, какой коэффициент матрицы 5 образует с точностью до четвертого знака аналогичной величины вурф. Этот коэффициент равен 1,0192975..., квадрат 1,038967... (обратная величина числа 1/1,019... = 0,98107.. выделена жирным шрифтом в матрице 6). Определим теоретический вурф W спектральных линий:
W(1;1,01929...;1,0389...) = (1+1,019...)(1,019...+1,0389...)/
/1,019...(1+1,019+1,0389) = 1,33343,
а это означает, что все три серии спектральных линий водорода изменяются пропорционально некоторому коэффициенту k и числу 1,01929... Найдем этот коэффициент, для чего разделим предпоследние числа серий на последние:
к1 = 923,15/920,96 = 1,002378... к2 = 1,009874, k3 = 1,02375...