Золото Древней Руси. Русская матрица - основа золотых пропорций

Страница: 1 ... 2627282930313233343536 ... 82

Значения вурфов немного варьируются, составляя в среднем величину W = 1,31. В идеальном случае В.Петухов указывает W = 1,309, что при выражении через величину золотого сечения равно Ф2/2 (второе вправо число от числа 2 матрицы 5 — A. Ч). Он называет его "золотым вурфом" ...

Вурфные пропорции позволяют, следовательно, выявить конформно-симметричные группы, иными словами, группы родственных отношений с единым исходным началом. Обычные двучленные пропорции показывают лишь различия, вурфные — общность некоторого множества трехчленных соотношений."

Следует отметить, как показал еще А.А. Пилецкий, что древнерусские зодчие были не просто знакомы с существованием вурфов, но и в своей повседневной работе постоянно использовали их. И вот здесь он также обращается к тому самому новгородскому облому, основное предназначение которого Б.А. Рыбаков определил как расчерчивание кружал и дуг. А.А. Пилецкий, опираясь на деления, нанесеные на три грани и равные соответственно а = 5,919 см; b = 7,317 см; с = 8,358 см, находит их пропорциональность Ф и вурфные взаимосвязи. Соотношения самих делений таковы: 2а/b = 1,618 = Ф, 4а/Зb = 0,944 (третье число в строке матрицы 5 влево от числа 0,5 — A.Ч.).

«Суть инструмента состояла в том, чтобы целыми числами его делений строить не только эстетически совершенные виды архитектурных пропорций (невозможные по причине их иррациональности), но и широкий класс трехчастных вурфных пропорций. Если взять по одному делению в возрастающем порядке, то вычисляется вурф W(5,919; 7,318; 8,358), или в буквенном обозначении W(а, b, с) = 1,31; 1,309 = Ф2 /2.

Таким образом, наиболее простое соотношение делений сразу же дает золотой вурф. Если же взять деления в том же порядке, но по количествам За, 2в, 1с, то вурф W(Зa, 2b, 1с) = 1,250, что равно квадрату функции Жолтовского (1,118)2 = 1,250 (или вурфу из системы: W(1; Ф2; Ф4) = 1,25).

Инструментом новгородских зодчих можно построить много групп трехчленных пропорций с различными значениями вурфов, откладывая определенное количество его делений. Например, следующие соотношения делений, помимо упомянутого {а, b, с), дают такое же или близкое значение вурфа 1,309:
W(14a,10b,7с) - 1,309,
W(17а,10b,6с) - 1,308,
W(6a,10b,23с) - 1,310 и т.д.»

Что же дает в архитектуре пропорционирование конструкции в соответствии с золотым вурфом? Ведь в отличие от изменяющегося со временем организма оно всегда остается неизменной.

Однако неизменность конструкции на самом деле кажущаяся. Наблюдатель всегда перемещается относительно конструкции и рассматривает ее под самыми различными углами зрения, а вместе с изменением угла зрения меняется и пропорциональность составных частей конструкции.

— 31 —
Страница: 1 ... 2627282930313233343536 ... 82