Тогда границы (7), (8) превращаются в Чтобы планковские величины «проявились», можно рассуждать так. Будем стремиться измерять гравитационное поле не только с наименьшей неопределенностью, но и в наименьшем возможном объеме, стремясь определить «поле в данной точке». Тогда уже придется рассматривать обе границы (7), (8), а не только первую из них. Для уменьшения неопределенности Г100 надо использовать максимальную возможную плотность пробного тела; в силу (12) это При этом соответствующие размеры пробного тела и, наконец, минимальная неопределенность напряженности гравитационного поля Г По самому смыслу измерения напряженности, усредненной за промежуток времени Т, должно выполняться условие At<T. Поэтому при данном Т следует стремиться к наименьшему возможному At. Так как т1 уменьшается с уменьшением V, а т2 растет, минимальное значение наибольшей из величин т1, т2 достигается при т1=т2. Тогда Если же мы учтем, что неопределенность в измерении гравитационного поля следует оценивать по суммарному воздействию на пробное тело — работе напряженнос1т/и3 на расстоянии порядка размеров тела Ag=Ar-V13 (эта же величина описывает неопределенность метрики), то получим Таким образом, область применимости классической теории гравитации и пространства-времени ограничивается действительно планковскими величинами. Чтобы получить планковские масштабы для квантово-гравитационных явлений, не обязательно привлекать анализ измеримости, как Бронштейн в 1935 г., или фейнмановский интеграл, как Уилер в 1955 г. Достаточно простейшим способом ввести в рассмотрение константы с, G и h. Можно это сделать уже на уровне физики 1913 г. Рассмотрим две точечные частицы массы М, связанные гравитационным взаимодействием и движущиеся по круговой орбите радиуса R. Подчиним эту систему классической механике Ma=Mv2/R— =GM2/(2R)2 и квантовому постулату Бора 2MvR=nh, n=1, 2,... Чтобы выяснить, при каких значениях параметров Ми R описание системы должно существенно учитывать квантово-релятивистские эффекты, нужно положить, что п достаточно близко к единице и скорость v достаточно близка к скорости света с. Тогда легко получить, что квантово-гравитационной области соответствует одновременная близость М и R к планковским значениям. Однако при этом глубокий пространственно-временной смысл cGh-границ остается, конечно, незаметным. г) Восприятие квантово-гравитационных границ. Если бы даже в 30-е годы были известны планковские характеристики квантово-гравитационных границ, решиться т-3о3гда гово-р5ить о н1и9х было нелегко. Ведь величины 10-33 см и 10-5 г (=1019 ГэВ) фантастически далеки от насущных для физики того времени величин ядерных масштабов 10-13 см и 1 ГэВ. — 113 —
|