При этом Бронштейн в ясной форме воспроизвел боровский вывод о несмертельном характере с/-ограничений для теории поля. Проведем упрощенные выкладки, измеряя напряженность электромагнитного поля Е по изменению импульса пробного тела с зарядом Q и массой М: Неопределенность AE составляют два слагаемых. Первое порождается неопределенностью измерения импульса: и «обратное» поле Второе слагаемое — это «обратное» поле, источником которого является ток — произведение заряда пробного тела на его скорость. Неопределенность этой скорости (скорости отдачи), соответствующая локализации пробного тела с неопределенностью Ax, равна Устремляя Ах к нулю и полагая, что р и ц достаточно быстро, но по разным законам стремятся к бесконечности, можно считать, что АЕ—0 при Ах—0. Тем самым оправдывается понятие «электромагнитное поле в точке». Бор особенно подчеркивал, что неопределенность поля, обусловленная влиянием самого пробного заряда, может быть сделана, вопреки Ландау—Пайерлсу, сколь угодно малой, а Бронштейн указал, что для максимальной точности измерения поля не следует стремиться к наименьшей реакции излучения на пробное тело. И хотя общий вывод остался прежним, Бронштейн подчеркнул, что возможности теории когда-нибудь придется согласовать с возможностями природы: «Принципиальная невозможность измерить с произвольной точностью поле в будущей релятивистской теории квант будет связана с принципиальным атомизмом материи, т. е. с принципиальной невозможностью беспредельно увеличивать [плотность заряда] р». Таким образом, в заметке 1934 г. Бронштейн сбалансированно представил с/-ограничения на измеримость электромагнитного поля. Поэтому не удивительно, что год спустя он обратился к анализу измеримости гравитационного поля. b) cGh-измеримость и квантовые границы ОТО. Проследим за этим анализом внимательно, вместе с Бронштейном «немного мысленно поэкспериментируем!» (так называется параграф в [30]). Напомним сначала, что в приближении слабого гравитационного поля метрический тензор gik представляется в виде где 8ik — плоская метрика Минковского, а все величины hik«1. В этом случае, как показал еще Эйнштейн в 1916 г., общие нелинейные уравнения ОТО сводятся к линейным (с точностью до членов высшего порядка малости по hik): где Tik— тензор энергии-импульса, а к=16л?т/с2. Сконструировав подходящий для этого случая гамильтониан гравитационного поля, Бронштейн выписывает перестановочные соотношения в соответствии с общей схемой квантования полей Гейзенберга и Паули 1929 г. — 109 —
|