Второй член, тензор энергии-импульса (T?v, воплощает материю. Уравнение Эйнштейна объясняет нам, что в определенной части пространства его кривизна пропорциональна числу (константа G) и количеству материи (или энергии), которая в нем содержится. Мы можем представить себе мир с малой плотностью и постоянными скоростями как гладкий лист бумаги, испещренный прямыми линиями, который начинает сморщиваться, когда увеличивается плотность и появляется ускорение, вплоть до излома линий. Это изменение отражает метрика Минковского, константы которой в определенный момент начинают изменяться. Движение тел в гравитационном полеПредположим, что несколько человек держат на весу простыню. В ее центр помещают тяжелый шар. Если начать покачивать простыню, на ее поверхности появятся складки и морщины, которые приведут шар в движение. Он будет двигаться по всем возможным траекториям, скатываясь вниз и замедляясь на подъемах. Движение шара будет полностью зависеть от формы, которую принимает поверхность простыни, от ее геометрии. Однако шар играет не только пассивную роль: под его весом и от его движений поверхность простыни также меняется. А если на простыню бросить маленький стеклянный шарик, его траектория будет зависеть не только от движения простыни, но и от перемещений большого шара. Если бы простыня была невидимой, мы могли бы заметить, как таинственная сила, исходящая из центра большого шара, воздействует на стеклянный шарик, словно притягивая его к себе. Нам бы не пришло в голову объяснить кривую, которую вычерчивает стеклянный шарик, деформацией невидимой простыни, геометрия которой зависит от присутствия и движения тел, находящихся на ней. Эту аналогию можно перенести на гравитационные поля, в которых присутствие массы (и, следовательно, энергии) деформирует структуру пространства-времени, ускоряя, замедляя или отклоняя от траектории все тела, участвующие в этом танце. Присутствие массы позволяет нам в точности воссоздать архитектуру четырехмерного пространства, о котором говорится во втором утверждении, а первое утверждение описывает траектории любого тела, движущегося в этом пространстве. Уравнение Эйнштейна отражает важное геометрическое свойство. Оно включает инварианты и, следовательно, справедливо для любого наблюдателя. Если расстояние и кривизна пространства не зависят от системы координат, то физические феномены также не обусловлены положением наблюдателя в пространстве – так можно обобщить один из постулатов специальной теории относительности: любое физическое явление протекает одинаково во всех инерциальных системах отсчета. Однако мы можем пойти дальше и сказать: физические законы действуют одинаково во всех системах отсчета, движущихся с ускорением. — 58 —
|