Пространство - это вопрос времени. Эйнштейн. Теория относительности

Страница: 1 ... 4849505152535455565758 ... 88

Геометрические свойства поверхности должны быть независимы от системы координат, выбранной для ее описания, – так же, как в новостях, на какой бы язык мы их ни перевели, речь должна идти об одном и том же. Расстояние между двумя точками – это информация, которая не меняется с «переводом», то есть с изменением координат. Точки 1 и 2 находятся на разных расстояниях от точек А и В, но расстояние между ними самими не меняется, то есть, на языке алгебры, расстояние является инвариантом (рисунок 11). С помощью метрической функции возможно определить расстояние между любыми двумя точками на поверхности. Также она позволяет построить другие инварианты, например кривизну, то есть величину, выражающую, насколько отклоняется поверхность от евклидовой плоскости (рисунок 12).

Построение метрической функции

Чтобы построить метрическую функцию, Гаусс начал с расстояния между любыми двумя ближайшими точками на поверхности, координаты которых различались бы ничтожно мало. Самое элементарное понятие расстояния можно получить из теоремы Пифагора (рисунок 1). Чтобы указать, что мы можем произвольно уменьшить расстояние между точками (х1; у1) и (х2 ;у2 ), изменим обозначение ?х (измеряемая величина) на dх (дифференциальная величина) (рисунок 2). Это обозначение перестает работать, когда координаты больше не указывают на две перпендикулярные оси, х и у, либо если мы находимся на искривленной поверхности, например на поверхности шара (рисунок 3).

РИС. 1

РИС. 2

РИС.3

Чтобы расширить рамки теории, Гаусс работал с более общими координатами, и и v, и установил, что квадрат расстояния между двумя точками, разделенными бесконечно малым расстоянием (u, v) и (u + du, v + dv) определяется по формуле:

где Е, F и G – функции координат.

Чтобы измерить длину, достаточно сложить по всей длине кривой все бесконечно малые расстояния ds ? , заключенные между двумя ее крайними точками. Немец Бернхард Риман не удовлетворился исследованием поверхностей в двух измерениях и расширил вопрос, поставленный Гауссом, на любое их число. В этом случае

где n может быть любым натуральным числом.

Числа g являются функциями координат. Следовательно, квадрат расстояния между двумя ближайшими точками ds? увеличивается и уменьшается по мере того, как мы перемещаемся по поверхности и обнаруживаем ее неровности.

Если сделать формулировку Гаусса более общей, как предложил Риман, получим следующее:

n = 2 x1 =u x2 =v

— 53 —
Страница: 1 ... 4849505152535455565758 ... 88