g12=g21=F g11=E g22=G Совокупность функций g (метрик) отражает неровности рельефа. Их можно представить в виде квадратной матрицы из n? элементов: Инварианты отражают объективные свойства пространства и не зависят от точки зрения, выбранной для описания поверхности. Это свойство предлагало вторую аналогию, очень заманчивую для Эйнштейна, который задавался вопросом: возможно ли, что принцип относительности продолжает действовать для систем, которые обладают ускорением одна по отношению к другой? Иными словами, если принцип выполняется в системах с постоянной скоростью, будет ли он выполняться в системах с переменной скоростью? Вспомним, что один из постулатов специальной теории относительности звучит так: «Любое физическое явление протекает одинаково во всех инерциальных системах отсчета». Этот постулат кажется связанным со следующим геометрическим принципом: «Инварианты, такие как расстояние и кривизна, одинаковы в любой системе координат». Этот параллелизм позволил Эйнштейну подойти очень близко к границе физики и геометрии. От специальной теории относительности к общейНемецкий математик Герман Минковский (1864-1909) подготовил почву для того, чтобы выразить идеи Эйнштейна на языке Гаусса. Он предложил четырехмерное псевдоевклидово пространство в качестве геометрической интерпретации пространства-времени специальной теории относительности. Минковский сделал не лишенное театральности заявление: «Отныне пространство и время по отдельности отступают на второй план, и лишь их единый континуум будет рассматриваться как независимая реальность». Аналогичную операцию он провел и с тремя пространственными координатами – шириной, глубиной и высотой. Если представить себе муху, перемещающуюся по прямой линии, то логично вообразить ее передвижение с помощью моментальных снимков через определенные интервалы времени. Можно представить насекомое в виде точки, которая скользит по диагонали на двумерной плоскости, где t и х- подобные переменные. Движение тел в пространстве с течением времени представляет собой перемещение по четырехмерной гиперповерхности, на которой каждому событию соответствуют три координаты трехмерного евклидова пространства и четвертая – координата времени. После этого концептуального скачка параллели между свободным падением и невесомостью и между кривой поверхностью и касательной к ней плоскостью перестали быть простыми аналогиями. Геодезические линии и инварианты метрической функции немедленно приобрели физический смысл. — 54 —
|