б) Пропорция. Античные теории различали три типа пропорции. Первый тип - пропорция арифметическая, в первую очередь указывает на равновесие. Если мы пробегаем глазами расстояние между двумя точками в художественном произведении и потом это же самое расстояние находим в другом месте того же произведения, то это и будет арифметическая пропорция, в отношении которой симметрия является лишь известной ее разновидностью. С помощью этой пропорции греки достигали правильной структуры художественного произведения, радующей глаз единством своих величин и направлений. Второй тип - пропорция геометрическая. Это - равенство двух отношений. Если арифметическая пропорция указывает на равенство различий между двумя точками в одном месте и двумя точками в другом месте, то геометрическая пропорция говорит о равенстве уже не различий, а отношений. Если в одном месте художественного произведения один элемент превосходит другой элемент в несколько раз и если в другом месте мы находим такое же взаимоотношение элементов, это будет пропорция геометрическая. Ее эстетический смысл совершенно ясен; он тоже сводится к закону равновесия, или правильности. Интересна та разновидность геометрической пропорции, где средние члены являются одинаковыми. В этом случае закон геометрической пропорции мы должны прочитать так: целое так относится к большей части, как большая - к меньшей. Другими словами, это не что иное, как знаменитый закон золотого деления. Об его огромной значимости и распространении много сказано. Однако, его эстетическая сущность отнюдь не всегда формулируется с подобающей точностью. Ведь существенным является здесь то, что отношение между целым и частью остается в художественном произведении везде одним и тем же, как бы мы ни двигались от всей целости в направлении постепенно уменьшающихся ее частей. Очевидно, это тоже только частный случай правильности структуры. Наконец, уже ранняя классика формулировала так называемую гармоническую пропорцию. Она получается в том случае, если мы, беря разницу одной величины с другой и этой другой с третьей, получаем отношение этих двух разниц равным отношению первой и третьей величины. Другими словами, здесь мыслится отношение двух каких-либо частей к их положению относительно третьей части. Очевидно, это лишь усложнение той правильности и соразмерности, которые мы находили в двух первых пропорциях. в) Ритм. Это тоже есть правильность и равновесие, но только данные в движении. Достаточно указать на Гераклита и Эмпедокла, чтобы удостовериться в огромной значимости этой структурной категории для периода классики. — 393 —
|