Ранняя классика

Страница: 1 ... 385386387388389390391392393394395 ... 416

Эстетическое значение предела в ранней греческой эстетике огромно. Красоту греки хотели видеть недостижимой, но в то же время совершенно ясной и понятной в каждой точке движения реального мира. Для современной математики понятие предела и понятие непрерывного, никогда не достигающего своей цели движения (или мгновенного перескакивания через этот предел в дальнейшее становление), являются понятиями чисто научными, для демонстрации которых требуется минимальная интуиция. При достаточно абстрактной формулировке понятия предела здесь даже и совсем никакой интуиции не требуется. Однако - и с этим мы уже много раз встречались - в античности самые абстрактные теории мышления всегда базировались на чувственной интуиции; эта интуиция всегда выдвигалась на первый план и часто даже больше чем надо, часто даже ценою затемнения самой мысли. Поэтому недостижимость красоты, с одной стороны, а с другой стороны, постоянное наличие стремления к ней - это важнейший принцип античной эстетики. Путем последовательного проведения этого принципа в значительной мере достигалось выражение того общеизвестного эстетического феномена, что во всякой красоте есть вечное искание и ненасытное стремление, хотя, с другой стороны, красота так же понятна, ясна, определенна и достижима при помощи конечных и притом небольших переходов, как и всякая вообще чувственная вещь.

Красота как дифференциал. С точки зрения древних красота заключается, прежде всего, в совместимости и цельности, во взаимной зависимости, которую мы назвали бы теперь функциональной зависимостью. Кроме того, красота, о античной точки зрения, заключается в вечном движении. Но элементы, зависящие друг от друга и пребывающие в вечном и непрерывном движении, мы теперь называем аргументом и функцией, изменение которых непрерывно и едва заметно нарастает. Имея какой-нибудь непрерывно нарастающий аргумент, мы в то же время не можем не иметь и непрерывно нарастающей функции. Предел бесконечно малого нарастания функции называется дифференциалом. И, следовательно, если прекрасно вечное и непрерывное движение, а также если прекрасна и всякая непрерывная зависимость одного движения от другого, то ясно, что прекрасен и всякий дифференциал функции. Красота есть дифференциал. Отрицая в античной эстетике красоту в виде дифференциала, мы не сможем понять в ней взаимозависимости стихий и их вечного непрерывного движения. Примером красоты как дифференциала может служить любое философское учение о красоте в ранней классике, потому что вся эта классика исходит из непрерывного движения взаимозависимых стихий. Но первую роль играют здесь, конечно, все ионийцы во главе с атомистами.

— 390 —
Страница: 1 ... 385386387388389390391392393394395 ... 416