в) Математизм. Этот принцип структуры классического искусства и красоты потребует несколько более подробного объяснения. Равнозначность направлений. Этот принцип теоретически разработан современной математикой. Однако он был хорошо известен и древним грекам, хотя и воспринимался ими исключительно интуитивно. Что значит мыслить прямую линию? Это значит рассмотреть ее во всем ее бесконечном протяжении, т.е. мыслить в качестве ее предела то, что современные математики называют бесконечно удаленной точкой. Но из самого понятия бесконечно удаленной точки вытекает, что такая точка может быть только одна. А если она одна, то все равно, в каком направлении двигаться для ее достижения, направо или налево, вверх или вниз. Иными словами, прямых вообще не существует - они оказываются окружностями. Вот почему древние так склонны к круговым движениям и вообще к движениям так или иначе закругленным; и вот почему желание избежать дурной бесконечности всегда приводило их (по крайней мере интуитивно) к благоговению перед окружностями, кругами, шарами и вообще закругленными геометрическими фигурами. Даже элейцы свое единое были склонны представлять шарообразно. Эмпедокл свой бесформенный сферос тоже представлял шарообразным. Согласно античным представлениям, безразлично не только то, куда двигаться (направо, налево, вверх или вниз; во всех этих случаях движение все равно возвращалось к исходной точке). Можно было и совсем никуда не двигаться; движение и в этом случае все равно совершалось и все равно приходило к исходной точке, так как при бесконечной скорости своего движения точка находится сразу во всех точках своей траектории, т.е. оказывается неподвижной. Завершенная бесконечность. С обывательской точки зрения, тут перед нами два несовместимых понятия - бесконечность, которая нигде не кончается и, следовательно, никак не может завершиться, и завершение, которое всегда кажется конечным, потому что оно обозримо. На самом же деле и с точки зрения современной математики и с точки зрения интуитивной эстетики древних никогда не завершающаяся бесконечность есть только один из типов бесконечности, а именно потенциальная бесконечность. Но существует и много других типов бесконечности, которым свойственна та или иная структура, а потому и завершенность. О таком понятии бесконечности как раз и учит современная нам математика. А древним она была понятна сама собой, была вполне наглядной и интуитивной. Повсеместная бесконечность. Такая бесконечность не нуждается в фактически завершенном протяжении. Величина может быть как угодно малой, и все-таки она будет содержать в себе бесконечное количество точек. И это одна и та же бесконечность - и в отрезке прямой, и в построенном на этом отрезке квадрате, и в построенном на этом квадрате кубе. Бесконечность точек, и притом одна и та же, будет при любых протяжениях и при любых метрических размерах геометрических элементов. Словом, куда ни обернись, везде бесконечность. Античный космос по своим метрическим размерам вполне конечен, но количество содержащихся в нем точек бесконечно - как и в любом детском мячике, как и в любом маковом зернышке. Греческая эстетика есть астрономия; а астрономия, с интуитивной точки зрения, невозможна без космических шаров и полушарий, без космических кругов и без космических круговых движений. Но бесконечность точек в них везде одна и та же. — 388 —
|