Площадь [фигуры] определяется величиной прямых, которые ее ограничивают, и величиной углов, образуемых этими прямыми. Следовательно, в двух выражениях: две площади равны и две площади ограничены равными прямыми, образующими одинаковые углы — содержится только одно предложение, выраженное двумя способами. Следовательно, предложения Площади двух треугольников равны и Стороны этих треугольников равны опять-таки суть два тождественных предложения. Два треугольника, которые содержат в себе прямоугольник, разделенный по диагонали, имеют, стало быть, равные площади, если их стороны равны и если они образуют одинаковые углы. Ведь сказать, что два треугольника заключены таким образом в прямоугольнике,— это то же самое, как если бы
Но сказать, что они равны во всем,— значит сказать, что каждый из двух треугольников относится к прямоугольнику как половина к целой единице, а это предложение есть не что иное, как перевод предложения Прямоугольник разделен на два равных треугольника. Ведь высказывание Поверхность треугольника относится к поверхности прямоугольника, имеющего то же основание и ту же высоту, что и данный треугольник, как половина к целому и высказывание Площадь такого треугольника представляет собой половину площади этого прямоугольника представляют собой по смыслу выражений два тождественных предложения. Но мы видели, что площадь прямоугольника есть произведение высоты на основание; значит, предложение Площадь этого треугольника есть половина площади данного прямоугольника будет тождественно предложению Площадь этого треугольника есть половина произведения его высоты на основание, или, как обычно выражаются, произведение высоты на половину основания. Предстоит лишь узнать, равна ли площадь всякого другого вида треугольника произведению высоты на половину основания. Какова бы ни была форма треугольника, площадь которого хотят узнать, из его вершины можно опустить перпендикуляр и этот перпендикуляр опустится на основание либо внутри треугольника, либо вне его. Если он опустится внутри треугольника (рис. 3), он разделит его на два треугольника, у каждого из которых две стороны взаимно перпендикулярны и которые, следовательно, являются треугольниками того же рода, что и треугольник, который мы измерили. Значит, площадь каждого из них равна половине произведения высоты на основание. — 8 —
|