Возьмем для этого прямоугольник (рис. 1), т. е. поверхность, ограниченную четырьмя перпендикулярными линиями. Вы видите, что можете рассматривать его как составленный из нескольких маленьких площадей одной и той же величины; все они одинаково ограничены перпендикулярными прямыми. Вы видите также, что все эти маленькие площади, взятые вместе,— это то же самое, что и целая поверхность всего прямоугольника. Ведь нет разницы между тем, чтобы разделить прямоугольник на одинаковые квадратные площади или наложить последовательно на все его части площадь определенной величины. Итак, я рассматриваю разделенный таким образом прямоугольник и вижу, что число квадратных футов, которое он имеет, в высоту, повторяется столько раз, сколько футов содержит его основание. Если на первом футе своего основания он имеет в точности три квадратных фута высоты, то он имеет также в точности три квадратных фута на втором, на третьем и на всех других. Эта истина заметна на глаз, но ее легко проверить при помощи тождественных предложений. В самом деле, прямоугольник представляет собой площадь, четыре стороны которой перпендикулярны друг другу. У площади, стороны которой перпендикулярны, противоположные стороны параллельны, т. е. одинаково удалены друг от друга во всех противоположных точках своей длины. Площадь, противоположные стороны которой одинаково удалены во всех точках, противоположных ее длине, имеет одинаковую высоту по всей длине своего основания. Площадь, имеющая одинаковую высоту по всей длине своего основания, имеет столько же футов в высоту, сколько ее основание имеет футов в длину. Все эти предложения тождественны. Они суть лишь различными способами выраженное предложение Прямоугольник есть прямоугольник. Следовательно, измерить прямоугольник, наложить последовательно на все части его поверхности площадь определенной величины, разделить его площадь на равные квадраты, взять число футов, которое он имеет в высоту, столько раз, сколько футов имеет в длину его основание, — это значит сделать одно и то же несколькими различными способами. Если это так, то больше нет необходимости ни в том, чтобы делить площадь на маленькие квадраты, ни в том, чтобы последовательно накладывать на различные части площадь определенной величины; взяв число футов в высоту столько раз, сколько имеется футов в основании, мы получим точные размеры данной площади. — 6 —
|