Об искусстве рассуждения

Страница: 123456789101112 ... 196

Таким образом, можно заменить предложение Измерить прямоугольник — значит взять число футов, которое он имеет в высоту, столько раз, сколько он имеет футов в основании предложением, с которого мы начали: Измерить прямоугольник — значит последовательно наложить на его различные части площадь определенной величины.

В самом деле, взглянув на эти выражения, мы не узна­ли, что эти два предложения являются по существу одним предложением, но тождество не могло от нас ускользнуть, когда мы стали его разыскивать в ряде промежуточных предложений. Мы видели, что одна и та же идея переходит из одних предложений в другие, а изменяется лишь способ, которым она выражается.

Доказать — значит осуществить перевод очевидного предложения, придавая ему различные формы до тех пор, пока оно не станет предложением, которое требуется доказать. Это значит изменять слова, которыми выражено предложение, и прийти через посредство ряда тождествен­ных предложений к заключению, тождественному тому предложению, из которого оно непосредственно выводится. Нужно, чтобы тождественность, незаметная, когда прохо­дят через промежуточные предложения, была бы явной при одном только взгляде на выражения, когда непосредствен­но переходят от одного предложения к другому.

Предложение, которое мы только что доказали: Изме­рить прямоугольник — значит взять число футов, которое он имеет в высоту, столько раз, сколько футов содержится в его основании — это то же самое, что умножить его высо-


12


13



ту на основание, а это опять-таки то же самое, что взять произведение его высоты на его основание.

Предложение же Площадь прямоугольника есть про­изведение его высоты на его основание есть правило, от ко­торого следует идти путем ряда предложений, всегда тож­дественных друг другу, вплоть до самого вывода: Площадь всякого треугольника есть произведение его высоты на половину основания.

Но я уже отметил, что если нам известна площадь прямоугольника, то мы найдем площадь треугольника, когда узнаем отношение одной из этих фигур к другой, ибо нет разницы между знанием площади фигуры и знанием того, как относится площадь данной фигуры к уже извест­ной площади какой-либо фигуры.

Прямоугольник (рис. 2). раз­деленный по диагонали, дает два треугольника, площади ко­торых, взятые вместе, равны его площади. Ведь сказать, что эти две площади равны площа­ди прямоугольника, — то же самое, что сказать, что два треугольника были образова­ны из прямоугольника при помощи диагонали, которая де­лит его пополам. Кроме того, Вы заметите, что поверх­ности этих двух треугольников равны; Вы даже на глаз видите истинность этого предложения; но нужно доказать Вам их тождественность.

— 7 —
Страница: 123456789101112 ... 196